预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年广东省广州市越秀区执信中学高二(上)期中数学试卷(文科)一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填涂在答题卡相应的区域.1.已知集合M={x|﹣1<x<1},N={x|y=},则M∩N=()A.{x|0<x<1}B.{x|0≤x<1}C.{x|x≥0}D.{x|﹣1<x≤0}2.已知下列命题:①命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1<3x”;②已知p、q为两个命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;③“a>2”是“a>5”的充分不必要条件;④“若xy=0,则x=0且y=0”的逆否命题为真命题.其中所有真命题的序号是()A.①②③B.②④C.②D.④3.2014年11月11日的“双十一”又掀购物狂潮,淘宝网站对购物情况做了一项调查,收回的有效问卷共500000份,其中购买下列四种商品的人数统计如下:服饰鞋帽198000人;家居用品94000人;化妆品116000人;家用电器92000人.为了解消费者对商品的满意度,淘宝网站用分层抽样的方法从中选出部分问卷进行调查,已知在购买“化妆品”这一类中抽取了116人,则在购买“家居用品”这一类中应抽取的问卷份数为()A.92B.94C.116D.1184.如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“mMODn”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=()A.0B.5C.45D.905.如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,则图形Ω面积的估计值为()A.B.C.D.6.已知向量,,则∠ABC=()A.30°B.60°C.120°D.150°7.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π),直线x=是它的一条对称轴,且(,0)是离该轴最近的一个对称中心,则φ=()A.B.C.D.8.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是()A.cm2B.cm2C.8cm2D.14cm29.给出如下列联表:患心脏病患其它病合计高血压201030不高血压305080合计5060110参照公式K2=,P(K2≥10.828)≈0.001,p(K2≥6.635)≈0.001得到的正确结论是()A.有99%以上的把握认为“高血压与患心脏病无关”B.有99%以上的把握认为“高血压与患心脏病有关”C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”10.已知a>0,b>0,若不等式﹣﹣≤0恒成立,则m的最大值为()A.4B.16C.9D.311.两定点F1(﹣3,0),F2(3,0),P为曲线=1上任意一点,则()A.|PF1|+|PF2|≥10B.|PF1|+|PF2|≤10C.|PF1|+|PF2|>10D.|PF1|+|PF2|<1012.将正奇数排成如图所示的三角形数阵(第k行有k个奇数),其中第i行第j个数表示为aij,例如a42=15,若aij=2015,则i﹣j=()A.26B.27C.28D.29二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答卷的相应位置13.如果发现散点图中所有的样本点都在一条直线上,则残差平方和等于,解释变量和预报变量之间的相关系数等于.14.若方程表示椭圆,则m的取值范围是.15.若x,y满足约束条件.则的最大值为.16.已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是.三.解答题:必做大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,角A,B,C所对的边分别为a,b,c,点(a,b)在直线x(sinA﹣sinB)+ysinB=csinC上.(Ⅰ)求角C的值;(Ⅱ)若2cos2﹣2sin2=,且A<B,求.18.已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.19.如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面ABCD垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)在棱PB上是否存在一点Q,使得QM∥面PAD?若存在,指出点Q的位置并证明;若不存在,请说明理