预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017-2018学年内蒙古赤峰市二中高二(上)第一次模拟数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.(5分)若a,b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.a2b<ab2C.<D.<2.(5分)已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于()A.50B.70C.80D.903.(5分)在空间直角坐标系中,已知点P(1,,),过P作平面yOz的垂线PQ,则垂足Q的坐标为()A.(0,,0)B.(0,,)C.(1,0,)D.(1,,0)4.(5分)若三棱锥的三条侧棱两两垂直,且其长度分别为1,,,则此三棱锥的外接球的表面积为()A.6πB.12πC.18πD.24π5.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c.若asinBcosC+csinBcosA=b且a>b,则B=()A.B.C.D.6.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若,则这样的三角形有()A.0个B.1个C.2个D.至多1个7.(5分)若直线ax+2by﹣2=0(a>0,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则+的最小值为()A.1B.3+2C.5D.8.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣9.(5分)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.10.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的最小值为()A.B.C.D.11.(5分)等差数列{an}中,a3=8,a7=20,若数列{}的前n项和为,则n的值为()A.14B.15C.16D.1812.(5分)某几何体中的一条线段长为,在该几何体的正视图中,这条线段的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()A.B.C.4D.二、填空题(本大题共4题,每小题5分,共20分)13.(5分)图中阴影部分的点满足不等式组,在这些点中,使目标函数k=6x+8y取得最大值的点的坐标是.14.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为.15.(5分)已知等差数列{an}{bn}的前n项和分别为Sn,Tn,若,则=.16.(5分)如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是.三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,=(cosA,cosC),=(c﹣2b,a),且⊥.(1)求角A的大小;(2)若a=b,且BC边上的中线AM的长为,求边a的值.18.(12分)在平面直角坐标系内,已知A(1,a),B(﹣5,﹣3),C(4,0)(1)当时,求直线AC倾斜角α的取值范围(2)当a=2时,求△ABC中BC边上的高AH所在直线的一般式方程.19.(12分)已知数列{an}满足:a1=1;an+1﹣an=1,n∈N*.数列{bn}的前n项和为Sn,且Sn+bn=2,n∈N*.(1)求数列{an}、{bn}的通项公式;(2)令数列{cn}满足cn=an•bn,求其前n项和为Tn.20.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.21.(12分)已知圆M:x2+(y﹣4)2=1,直线l:2x﹣y=0,点P在直线l上,过点P作圆M的切线PA、PB,切点为A、B.(Ⅰ)若∠APB=60°,求P点坐标;(Ⅱ)若点P的坐标为(1,2),过P作直线与圆M交于C、D两点,当|CD|=时,求直线CD的方程;(Ⅲ)求证:经过A、P、M三点的圆与圆M的公共弦必过定点,并求出定点的坐标.22.(12分)如图1,在长方形ABCD中,AB=2,AD=1,E为CD的中点,以AE为折痕,把△DAE折起为△D′AE,且平面D′AE⊥平面ABCE(如图2).(1)求证:AD′⊥BE(2)求四棱锥D′﹣ABCE的体积;(3)在棱D′E上是否存在一点P,使得D′B∥平面PAC,若存在,求出点P的位