预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

重庆市杨家坪中学高2025届高二(上)九月测试数学试题(满分150分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂思.如简改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点(1,0)且与直线=平行的直线方程式()A.B.C.D.【答案】A【解析】【分析】由题意利用点斜式求直线的方程.【详解】解:过点且与直线平行的直线方程式为,即,故选:.【点睛】本题主要考查用点斜式求直线的方程,考查直线与直线平行条件的应用,属于基础题.2.过点且垂直于直线的直线方程为()A.B.C.D.【答案】B【解析】【分析】根据两直线的垂直可得出斜率得关系,即可点斜式得出直线方程.【详解】因为直线的斜率,所以过点且垂直于直线的直线方程为,即.故选:B3.若,,为两两垂直的三个空间单位向量,则()A.B.C.D.【答案】B【解析】【分析】利用空间向量的数量积性质即可求解.【详解】依题意得,,;所以,故选:B.4.蹴鞠,又名“蹴球”“蹴圆”等,“蹴“有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.已知某“鞠”的表面上有四个点P、A、B、C,其中平面,,则该球的体积为()A.B.C.D.【答案】C【解析】【分析】根据线面垂直得到线线垂直,进而得到三棱锥的外接球即为以为长,宽,高的长方体的外接球,求出长方体体对角线的长,得到该球的半径和体积.【详解】因为平面,平面,所以,又,所以两两垂直,所以三棱锥的外接球即为以为长,宽,高的长方体的外接球,即该球的直径为长方体体对角线的长,因为,所以,所以该球的半径为2,体积为.故选:C5.如果,那么直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】将直线的一般式方程转化为斜截式方程即可.【详解】由可得,,所以直线的斜率纵截距,所以直线经过一、二、四象限,故选:C6.在正方体中,P为的中点,则直线与所成的角为()A.B.C.D.【答案】D【解析】【分析】平移直线至,将直线与所成的角转化为与所成的角,解三角形即可.【详解】如图,连接,因为∥,所以或其补角为直线与所成的角,因为平面,所以,又,,所以平面,所以,设正方体棱长为2,则,,所以.故选:D7.如图,空间四边形OABC中,,点M在上,且,点N为BC中点,则()A.B.C.D.【答案】B【解析】【分析】根据空间向量的加减和数乘运算直接求解即可.【详解】因为,所以,所以,又点N为BC中点,所以,所以.故选:B.8.若,则直线的倾斜角的取值范围为()A.B.C.D.【答案】C【解析】【分析】根据给定条件,结合余弦函数的值域求出直线斜率的范围,再利用斜率的定义求解作答.【详解】直线的斜率,显然此直线倾斜角,因此或,解得或,所以直线的倾斜角的取值范围为.故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.正方体的截面可能是A.钝角三角形B.直角三角形C.菱形D.正六边形【答案】CD【解析】【分析】如图所示截面为三角形ABC,设OA=a,OB=b,OC=c,应用余弦定理,证明是锐角三角形;如图,取相对棱的中点和相对顶点,得到的四边形是菱形;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形.【详解】如图所示截面为三角形ABC,OA=a,OB=b,OC=c,∴,∴∴∠CAB为锐角,同理∠ACB与∠ABC也为锐角,即△ABC为锐角三角形,∴正方体的截面若是三角形,则一定是锐角三角形,不可能是钝角三角形和直角三角形,A、B错误;若是四边形,则可以是梯形(等腰梯形)、平行四边形、菱形、矩形、正方形,但不可能是直角梯形,C正确;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形,故若是六边形,则可以是正六边形,D正确.故选:CD.【点睛】本题考查正方体截面问题,考查空间想象能力,属于中等难度.10.下列说法正确的是()A.过两点的直线方程为B.直线与两坐标轴围成的三角形的面积是C.点关于直线的对称点为D.直线必过定点【答案】BD【解析】【分析】对于A,根据两点式直线方程的使用条件判断即可;对于B,求出直线分别在轴和轴上的截距,再用三角形面积公式求解即可;对于C,设点关于直线的对称点为,列方程组求解即可;对于D,将直线可转