预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第25讲直线与圆的位置关系要点梳理要点梳理要点梳理要点梳理1.(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°2.(2014·甘肃省)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断3.(2012·兰州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.4.(2014·天水)如图,PA,PB分别切⊙O于点A,B,点C在⊙O上,且∠ACB=50°,则∠P=.5.(2013·兰州)如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.(6(1)判断直线与圆的位置关系解:(2)如图,已知在△OAB中,OA=OB=13,AB=24,⊙O的半径长为r=5.判断直线AB与⊙O的位置关系,并说明理由.【点评】在判定直线与圆相切时,若直线与圆的公共点已知,证题方法是“连半径,证垂直”;若直线与圆的公共点未知,证题方法是“作垂线,证半径”.这两种情况可概括为一句话:“有交点连半径,无交点作垂线”.1(2)(2012·兰州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.解析:如图圆的切线的性质(1)【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.2.(2014·凉山州)如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A,B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.(切线的判定与性质的综合运用解:【点评】本题主要考查了切线的判定和性质,勾股定理和圆周角,解题的关键是运用圆周角和角平分线及等腰三角形正确找出相等的角3.(2013·凉山州)在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与⊙P的位置关系.解:(1)如图所示:△ABC外接圆的圆心为(-1,0),点D在⊙P上(2)连接PE,PD,∵直线l过点D(-2,-2),E(0,-3),∴PE2=12+32=10,PD2=5,DE2=5.∴PE2=PD2+DE2.∴△PDE是直角三角形,且∠PDE=90°.∴PD⊥DE.∵点D在⊙P上,∴直线l与⊙P相切