预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共34页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第六章图形的性质(二)第25讲直线与圆的位置关系要点梳理要点梳理要点梳理要点梳理两种方法:欲证直线为圆的切线时:(1)若知道直线和圆有公共点时,常连接公共点和圆心,证明直线垂直半径;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.两个防范:(1)直线和圆有一个公共点,则直线与圆相切.分析:直线和圆有一个公共点,不排除还有另一个公共点.正确说法:直线和圆有且只有一个公共点,则直线与圆相切.(2)圆的切线垂直于圆的半径.分析:圆的半径有无数条,切线垂直于哪条半径呢?正确说法:圆的切线垂直于过切点的半径.一种分类思想圆是一种极为重要的几何图形,由于图形位置、形状及大小的不确定,经常出现多结论情况.解题时漏解出错时有发生,解决这类问题,一定要仔细分析,缜密思考,分类讨论,逐一解答,切忌因思维定势或考虑不周而造成漏解.(1)由于点在圆周上的位置的不确定而分类讨论;(2)由于弦所对弧的优劣情况的不确定而分类讨论;(3)由于弦的位置不确定而分类讨论;(4)由于直线与圆的位置关系的不确定而分类讨论.1.(2014·临夏州)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断2.(2014·哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°3.(2014·无锡)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3B.2C.1D.04.(2014·绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.判断直线与圆的位置关系解:(2)如图,已知在△OAB中,OA=OB=13,AB=24,⊙O的半径长为r=5.判断直线AB与⊙O的位置关系,并说明理由.【点评】在判定直线与圆相切时,若直线与圆的公共点已知,证题方法是“连半径,证垂直”;若直线与圆的公共点未知,证题方法是“作垂线,证半径”.这两种情况可概括为一句话:“有交点连半径,无交点作垂线”.1(2)(2012·兰州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.圆的切线的性质(2)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.解:当以点O,D,E,C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形(1)求证:EB=EC;【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.2.(2014·凉山州)如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A,B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.切线的判定与性质的综合运用(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【点评】本题主要考查了切线的判定和性质,勾股定理和圆周角,解题的关键是运用圆周角和角平分线及等腰三角形正确找出相等的角.3.(2013·凉山州)在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与⊙P的位置关系.