预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课时作业65随机事件的概率 一、选择题 1.一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为(D) A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.恰有一个白球;一个白球一个黑球 D.至少有一个白球;红球、黑球各一个 解析:红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件. 2.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为(C) A.0.95 B.0.97 C.0.92 D.0.08 解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92. 3.甲、乙两人下棋,和棋的概率为eq\f(1,2),乙获胜的概率为eq\f(1,3),则下列说法正确的是(A) A.甲获胜的概率是eq\f(1,6) B.甲不输的概率是eq\f(1,2) C.乙输了的概率是eq\f(2,3) D.乙不输的概率是eq\f(1,2) 解析:“甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P=1-eq\f(1,2)-eq\f(1,3)=eq\f(1,6),故A正确;“乙输了”等于“甲获胜”,其概率为eq\f(1,6),故C不正确;设事件A为“甲不输”,则A是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)=eq\f(1,6)+eq\f(1,2)=eq\f(2,3)(或设事件A为“甲不输”,则A是“乙获胜”的对立事件,所以P(A)=1-eq\f(1,3)=eq\f(2,3)),故B不正确;同理,“乙不输”的概率为eq\f(5,6),故D不正确. 4.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表: 满意情况不满意比较满意满意非常满意人数200n21001000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是(C) A.eq\f(7,15) B.eq\f(2,5) C.eq\f(11,15) D.eq\f(13,15) 解析:由题意,n=4500-200-2100-1000=1200,所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为eq\f(3300,4500)=eq\f(11,15). 5.同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为(B) A.eq\f(1,3) B.eq\f(1,2) C.eq\f(2,3) D.eq\f(5,6) 解析:分别记《爱你一万年》《十年》《父爱》《单身情歌》为A1,A2,A3,A4,从这四首歌中选出两首歌进行表演的所有可能的结果为A1A2,A1A3,A1A4,A2A3,A2A4,A3A4,共6个,其中A1未被选取的结果有3个,所以所求概率P=eq\f(3,6)=eq\f(1,2).故选B. 6.(2019·浏阳一中模拟)公元五世纪,数学家祖冲之估计圆周率的值的范围是3.1415926<π<3.1415927.为纪念祖冲之在圆周率上的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6中随机选取2位数字,整数部分3不变,那么得到的数大于3.14的概率为(A) A.eq\f(28,31) B.eq\f(19,21) C.eq\f(22,31) D.eq\f(17,21) 解析:选择数字的总的方法有5×6+1=31(种),其中得到的数不大于3.14的数为3.11,3.12,3.14,所以得到的数大于3.14的概率为P=1-eq\f(3,31)=eq\f(28,31).故选A. 二、填空题 7.若采用随机模拟的方法估计某运动员射击击中目标的概率,先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的