预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题3.1导数的概念及运算 【考试要求】 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想; 2.体会极限思想; 3.通过函数图象直观理解导数的几何意义; 4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=eq\f(1,x),y=eq\r(x)的导数; 5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数; 6.会使用导数公式表. 【知识梳理】 1.函数y=f(x)在x=x0处的导数 (1)定义:称函数y=f(x)在x=x0处的瞬时变化率eq^\o(,\s\do4(Δx→0))eq\f(f(x0+Δx)-f(x0),Δx)=eq^\o(,\s\do4(Δx→0))eq\f(Δy,Δx)为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=eq\f(Δy,Δx)=eq\f(f(x0+Δx)-f(x0),Δx). (2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0). 2.函数y=f(x)的导函数 如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,函数f′(x)=limeq\o(,\s\up6(,Δx→0))eq\f(f(x+Δx)-f(x),Δx)称为函数y=f(x)在开区间内的导函数. 3.导数公式表 基本初等函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=exf′(x)=exf(x)=ax(a>0)f′(x)=axlnaf(x)=lnxf′(x)=eq\f(1,x)f(x)=logax(a>0,a≠1)f′(x)=eq\f(1,xlna)4.导数的运算法则 若f′(x),g′(x)存在,则有: (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(f(x),g(x))))′=eq\f(f′(x)g(x)-f(x)g′(x),[g(x)]2)(g(x)≠0). 5.复合函数的导数 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′. 【微点提醒】 1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0. 2.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,f(x))))′=-eq\f(f′(x),[f(x)]2). 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点. 4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”. 【疑误辨析】 1.判断下列结论正误(在括号内打“√”或“×”) (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)函数f(x)=sin(-x)的导数f′(x)=cosx.() (3)求f′(x0)时,可先求f(x0),再求f′(x0).() (4)曲线的切线与曲线不一定只有一个公共点.() 【答案】(1)×(2)×(3)×(4)√ 【解析】 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错. (2)f(x)=sin(-x)=-sinx,则f′(x)=-cosx,(2)错. (3)求f′(x0)时,应先求f′(x),再代入求值,(3)错. 【教材衍化】 2.(选修2-2P19B2改编)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是() A.-9 B.-3 C.9 D.15 【答案】C 【解析】因为y=x3+11,所以y′=3x2,所以y′|x=1=3,所以曲线y=x3+11在点P(1,12)处的切线方程为y-12=3(x-1).令x=0,得y=9. 3.(选修2-2P3例题改编)在高台跳水运动中,ts时运动员相对于水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则运动员的速度