预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题 1.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为() A. B. C. D. 2.对一组数(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y),且规定Pn(x,y)=P1(Pn-1(x,y))(n为大于1的整数),如:P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2),则P2017(1,-1)=(). A.(0,21008)B.(0,-21008)C.(0,-21009)D.(0,21009) 3.定义一种新运算“*”,即,例如.则的值为() A.12 B.24 C.27 D.30 4.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD的长为() A. B. C. D. 5.下列说法中,错误的有() ①符号相反的数与为相反数; ②当时,; ③如果,那么; ④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A.0个 B.1个 C.2个 D.3个 6.下列命题中,①81的平方根是9;②的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤,其中正确的个数有() A.1 B.2 C.3 D.4 7.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为() A.﹣40 B.﹣32 C.18 D.10 8.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于() A.120 B.125 C.-120 D.-125 9.已知(取的末位数字),(取的末位数字),(取的末位数字),…,则的值为() A.4036 B.4038 C.4042 D.4044 10.如图,数轴上O、A、B、C四点,若数轴上有一点M,点M所表示的数为,且,则关于M点的位置,下列叙述正确的是() A.在A点左侧 B.在线段AC上 C.在线段OC上 D.在线段OB上 二、填空题 11.请先在草稿纸上计算下列四个式子的值:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值__________. 12.阅读下列解题过程: 计算: 解:设① 则② 由②-①得, 运用所学到的方法计算:______________. 13.按下面的程序计算: 若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________. 14.若我们规定表示不小于x的最小整数,例如,,则以下结论:①;②;③的最小值是0;④存在实数x使成立.其中正确的是______.(填写所有正确结论的序号) 15.如图所示,数轴上点A表示的数是-1,0是原点以AO为边作正方形AOBC,以A为圆心、AB线段长为半径画半圆交数轴于两点,则点表示的数是___________,点表示的数是___________. 16.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______. 17.已知,则的值是__________; 18.已知M是满足不等式的所有整数的和,N是的整数部分,则的平方根为__________. 19.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______. 20.规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,[+1]=2,[﹣2.56]=﹣3,[﹣]=﹣2.按这个规定,[﹣﹣1]=_____. 三、解答题 21.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算