预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题1.按如图所示的程序计算,若开始输入的值为25,则最后输出的y值是()A.B.C.5D.2.已知,,…,均为正数,且满足,,则,的大小关系是()A.B.C.D.3.对一组数的一次操作变换记为,定义其变换法则如下:,且规定(为大于的整数),如,,,,则().A.B.C.D.4.若9﹣的整数部分为a,小数部分为b,则2a+b等于()A.12﹣B.13﹣C.14﹣D.15﹣5.数轴上A,B,C,D四点中,两点之间的距离最接近于的是()A.点C和点DB.点B和点CC.点A和点CD.点A和点B6.估算的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间7.观察下列各等式:……根据以上规律可知第11行左起第11个数是()A.-130B.-131C.-132D.-1338.下列命题中,①81的平方根是9;②的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤,其中正确的个数有()A.1B.2C.3D.49.下列说法中,正确的个数是().()的立方根是;()的算术平方根是;()的立方根为;()是的平方根.A.B.C.D.10.有一个数阵排列如下:则第行从左至右第个数为()A.B.C.D.二、填空题11.对于正数x规定,例如:,则f(2020)+f(2019)+……+f(2)+f(1)+=___________12.若|x|=3,y2=4,且x>y,则x﹣y=_____.13.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x的值是_____.14.如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是__________.15.定义一种新运算,其规则是:当时,,当时,,当时,,若,则____________.16.将1,,,按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,如(5,4)表示的数是(即第5排从左向右第4个数),那么(2021,1011)所表示的数是___.17.若.则=______.18.定义:如果将一个正整数写在每一个正整数的右边,所得到的新的正整数能被整除,则这个正整数称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为,将这个数写在正整数的右边,得到的新的正整数可表示为,请你找出所有的两位数中的“魔术数”是_____________.19.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______.20.对任意两个实数a,b定义新运算:a⊕b=,并且定义新运算程序仍然是先做括号内的,那么(⊕2)⊕3=___.三、解答题21.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长)22.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则.例如:,.(1)计算:;;(2)①求满足的实数的取值范围,②求满足的所有非负实数的值;(3)若关于的方程有正整数解,求非负实数的取值范围.23.在已有运算的基础上定义一种新运算:,的运算级别高于加减乘除运算,即的运算顺序要优先于运算,试根据条件回答下列问题.(1)计算:;(2)若,则;(3)在数轴上,数的位置如下图所示,试化简:;(4)如图所示,在数轴上,点分别以1个单位每秒的速度从表示数-1和3的点开始运动,点向正方向运动,点向负方向运动,秒后点分别运动到表示数和的点所在的位置,当时,求的值.24.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:.例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(24)=;(2)