预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

河南省部分学校2023-2024学年高一上学期期中大联考数学 试题 学校:___________姓名:___________班级:___________考号:___________ 一、单选题  1.已知集合A1,m,B2m2,1,若AB,则实数m() A.0B.1C.1或2D.2 1 2.函数fxx2的定义域是() x21  A.xx2B.x0x1或x2 C.xx1D.xx1 3.已知命题“xR,x22a10”为假命题,则实数a的取值范围是() 111 A.0,B.,C.1D., ,1 2222  4.“a1”是“函数fxaxa(a0且a1)的图象经过第三象限”的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 1 5.函数fxx x的大致图象是() A.B. C.D. 6.已知函数fx在区间0,5上单调递减,且fx5fx5,则() A.f8f3f4B.f3f8f4 试卷, C.f3f4f8D.f4f3f8 x2ax3 7.已知函数fx是奇函数,且在区间m1,m上的最大值为2,则m() x A.2或1B.1C.3D.3或1 fx2x1 8.已知函数fx是三次函数且幂函数,gx,则 2x g2023g2022g2021g0g2021g2022g2023() A.4047B.8092C.8094D.9086 二、多选题 9.已知ac,abc0,则() A.a2bcbB.abbc C.ababD.a2bcb fx,x0, 10.已知函数fxa1ax是指数函数,函数gx则() 4x4,x0, A.fx是增函数B.gx是增函数 C.gg23D.满足不等式fxgx的最小整数是 1 11 11.已知函数fx的定义域为R,且fxyy3fxx3fy,f,则() 28 A.fxx³B.f28 C.fx为奇函数D.fx为增函数 x1,x0  12.已知函数fx且fxfxfxfx(xxxx), 2x2,x012341234  则下列说法正确的有() A.fx在区间,1和0,1上单调递减  B.直线yaa1与fx的图象总有3个不同的公共点 C.xx2 12 D.xx2 34 试卷, 三、填空题  13.函数fxbx13(b0且b1)的图象过的定点坐标为. f41 14.已知幂函数fx满足3,则f. f28 15.科学研究发现,大西洋鲑鱼的耗氧量的单位数m与其游动速度v(单位:m/s)的 关系式为mk9v(k0且k为常数).当这种鲑鱼的游动速度为2m/s时,其耗氧量为 8100个单位,若这种鲑鱼的游动速度不小于1.5m/s,则其耗氧量至少为个单 位.  16.已知关于x的一元二次不等式kx22x20的解集为a,bba,则4ab的最 小值为. 四、解答题 3m2n 17.(1)已知5m2n ,53,求52的值; 21212111  (2)化简:4a3b3a3b3a3b3. 36 2 18.已知函数fxxxR. x (1)用函数单调性的定义证明fx是增函数; 2 (2)求不等式f2x1的解集. 2x 19.已知关于x的不等式2x2m2xm0. (1)当m2时,求该不等式的解集A;  (2)在(1)的条件下,若集合Bm²2m,m2,且ABB,求m的取值范围. 20.2023年9月23日,第19届亚运会开幕式在杭州举行,完美展现了“绿色”与“科技” 的融合.已知某种绿色科技产品在亚运会开幕式后的30天内(包括第30天),第x(xN*) x80,1x20, 天每件的销售价格M(单位:元)满足Mx第x天的日销售量 x120,20x30, b N(单位:千件)满足Nxa,且第2天的日销售量为13000件,第3天的日销 x 售量为