预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年北京市首都师范大学附属中学高二数学第二学期期末质量跟踪监视试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知点是点在坐标平面内的射影,则点的坐标为()A.B.C.D.2、复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2B.C.D.03、今天是星期四,经过天后是星期()A.三B.四C.五D.六4、“,”是“方程表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1B.2C.3D.46、三棱锥D-ABC中,AC=BD,且异面直线AC与BD所成角为60°,E、F分别是棱DC、AB的中点,则EF和AC所成的角等于()A.30°B.30°或60°C.60°D.120°7、等差数列中,为其前项和,,则的值为()A.13B.16C.104D.2088、若直线经过,,两点,则直线的倾斜角的取值范围是()A.B.C.D.9、某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值;B.,,,…,的标准差;C.,,,…,的中位数;D.,,,…,的众数;10、已知抛物线C:的焦点为F,过点P(-1,0)且斜率为的直线l与抛物线C相交于A,B两点,则()A.B.14C.D.15二、填空题(本题共6小题,每题5分,共30分)11、已知抛物线的焦点为F,过F的直线l交抛物线C于AB两点,且,则p的值为______12、底面半径为1,母线长为2的圆锥的体积为______13、已知直线与,若,则实数a的值为______14、若a,b,c都为正数,,且,,成等比数列,则的最大值为____________.15、已知抛物线C:的焦点F到准线的距离为4,过点F和的直线l与抛物线C交于P,Q两点.若,则________.16、函数在处的切线与平行,则________.三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.18、已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积19、已知椭圆C:()过点,且离心率为(1)求椭圆C的方程;(2)过点()的直线l(不与x轴重合)与椭圆C交于A,B两点,点C与点B关于x轴对称,直线AC与x轴交于点Q,试问是否为定值?若是,请求出该定值,若不是,请说明理由20、如图,扇形AOB的半径为2,圆心角,点C为弧AB上一点,平面AOB且,点且,面MOC(1)求证:平面平面POB;(2)求平面POA与平面MOC所成二面角的正弦值的大小21、已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D2、答案:B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B3、答案:C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:4、答案:A【解析】根据双曲线的方程以及充分条件和必要条件的定义进行判断即可【详解】由,可知方程表示焦点在轴上的双曲线;反之,若表示双曲线,则,即,或,所以“,”是“方程表示双曲线”的充分不必要条件故选:A5、答案:B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B6、答案:B【解析】取AD中点为G,连接GF、GE,易知△EFG为等腰三角形,且∠EGF为异面直线AC和BD所成角或其补角,据此可求∠FEG大小,从而得EF和AC所成的角的大小【详解】如图,取AD中点为G,连接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF为异面直线AC和BD所成角或其补角,故∠EGF=60°或120°故EF和AC所成角为∠FEG或其补角,当∠EGF=60°时,∠FEG=60°,当∠EGF=120°时,∠FEG=30°,∴EF和AC所成的角等于30°或60