预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届重庆市朝阳中学高二数学第二学期期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知等比数列的前n项和为,若,,则()A.250B.210C.160D.902、设函数,则曲线在点处的切线方程为()A.B.C.D.3、设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A.B.C.2D.4、在空间直角坐标系下,点关于轴对称的点的坐标为()A.B.C.D.5、若函数有两个不同的极值点,则实数的取值范围是()A.B.C.D.6、已知双曲线右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A.2B.C.D.7、抛物线的准线方程是A.x=1B.x=-1C.D.8、已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A.B.C.D.9、已知圆的方程为,圆的方程为,其中.那么这两个圆的位置关系不可能为()A.外离B.外切C.内含D.内切10、双曲线(,)的一条渐近线的倾斜角为,则离心率为()A.B.C.2D.4二、填空题(本题共6小题,每题5分,共30分)11、某甲、乙两人练习跳绳,每人练习10组,每组不间断跳绳计数的茎叶图如图,则下面结论中所有正确的序号是___________.①甲比乙的极差大;②乙的中位数是18;③甲的平均数比乙的大;④乙的众数是21.12、若点到点的距离比它到定直线的距离小1,则点满足的方程为_____________13、已知函数,数列是正项等比数列,且,则__________14、已知直线与圆交于两点,则面积的最大值为__________.15、已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.16、已知数列是等差数列,若,则___________.三、解答题(本题共5小题,每题12分,共60分)17、如图,四棱锥中,底面为正方形,底面,,点,,分别为,,的中点,平面棱(1)试确定的值,并证明你的结论;(2)求平面与平面夹角的余弦值18、已知双曲线的右焦点与抛物线的焦点相同,且过点.(1)求双曲线渐近线方程;(2)求抛物线的标准方程.19、已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值20、已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数21、某厂A车间为了确定合理的工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到数据如下:加工零件的个数x12345加工的时间y(小时)1.52.43.23.94.5(1)在给定的坐标系中画出散点图;(2)求出y关于x的回归方程;(3)试预测加工9个零件需要多少时间?参考公式:,参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】设为等比数列,由此利用等比数列的前项和为能求出结果【详解】设,等比数列的前项和为为等比数列,为等比数列,解得故选:B2、答案:A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A3、答案:A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来4、答案:C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.5、答案:D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.6、答案:B【解析】,得出到渐近线的距离为,由此可得的关系,从而求得离心率【详解】因为,而,所以是等边三角形,到直线的距离为,又,渐近线方程取,即,所以,化简得故选:B7、答案:C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题8、答案:C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为