预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-8-高2013级第四期4月阶段性测试数学试题(理)满分:150分时间:120分钟一.选择题:(共10个小题,每小题5分,共50分)1、已知命题为()A、B、C、D、2、若的展开式的二项式系数之和为64,则展开式的常数项为()A、10B、20C、30D、403、给出命题p:直线ax+3y+1=0与直线2x+(a+1)y+1=0互相平行的充要条件是;命题q:若平面α内不共线的三点到平面β的距离相等,则α//β。下列结论中正确的是()A、“p∧q”为真命题B、“p∨q”为假命题C、“p∨﹁q”为假命题D、“p∧﹁q”为真命题4、已知双曲线的左顶点与抛物线的焦点之间的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为,则双曲线的焦距为()A、B、C、D、5、被4除所得的余数为()A、0B、1C、2D、36、一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为A、B、C、D、7、高中某班语文、数学、英语、物理、化学、体育六门课安排在某一天,每门课一节,上午四节,下午两节,若数学课必须在上午,体育课必须在下午,数、理、化三门课中,任何两门课不相邻(上午第四节与下午第一节不叫相邻),则课程安排的种数为()A.24B、96C.48D、1248、在1,2,3,4,5这五个数字所组成的允许有重复数字的三位数中,其各个数字之和为9的三位数共有()A、16个B、18个C、19个D、21个9、从1,2,3,…,20这20个数中任取2个不同的数,则这两个数之和是3的倍数的概率为()A、B、C、D、10、如右图,某建筑工地搭建的脚手架局部类似于4×2×3的长方体框架(由24个棱长为l个单位长度的正方体框架组合而成).一建筑工人从A点沿脚手架到点B,每步走l个单位长度,且不连续向上攀登,则其行走的最近路线共有()A.150条B.525条C.840条D.1260条二.填空题:(共5个小题,每小题5分,共25分)11、已知的充分而不必要条件,则实数m的取值范围是。12、张先生订了一份《成都商报》,送报人在早上6:30—7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00—8:00之间,则张先生在离开家之前能拿到报纸的概率为。13、5双不同号码的鞋,任取4只,恰好取到一双的概率为。14、设F1、F2分别为双曲线的左、右焦点,若双曲线的右支上存在一点P,使的三边长构成等差数列,则此双曲线的离心率为。15、给出下列结论:①设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则α⊥β是a⊥b的必要不充分条件。②在区间[-1,1]上随机取一个数x,则的值介于0到之间的概率为③从以正方体的顶点连线所成的直线中任取两条,则所取两条直线为异面直线的概率为④将4个相同的红球和4个相同的篮球排成一排,从左到右每个球依次对应的序号为1,2,3,…,8,若同色球之间不加区分,则4个红球对应的序号之和小于4个蓝球对应的序号之和的排列方法种数为31.其中正确结论的序号为。三、解答题16、已知在的展开式中,第6项为常数项(1)求展开式中各项系数的和;(2)求的值;(3)求展开式中系数绝对值最大的项。17、在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人。(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖",则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.18、树德中学的机器人代表队在刚结束的全国总决赛中脱颖而出,取得控制奖全国第一的骄人成绩。该代表队由高二的三名男生和一名女生以及高一的两名男生组成。(1)在赛后的颁奖典礼上,这六位同学排成一排拍照留念,要求女生不站两边,且高一的两名男生不相邻,则这样的排法有多少种?(2)在赛前的宣传活动中,主办方准备将5份不同的宣传资料全部分发给高二的三名男生,则这三个男生每人至少拿到一份的概率为多少?19、如图,在四棱锥S—ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.(1)求证:AM//平面SCD;(2)求平面SCD与平面SAB所成的二面角的余弦值;(3)设点N是直线CD上的动点,MN与平面SAB所成的角为θ,求的最大值。20、已知抛物线C:y2=4x,