预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《频率与概率》教案教学目标:1。经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。3.能运用树状图和列表法计算简单事件发生的概率。教学重点:运用树状图和列表法计算事件发生的概率。教学难点:树状图和列表法的运用方法。教学过程:问题引入:对于前面的摸牌游戏,在一次试验中,如果摸得第一张牌面数字为1,那么摸第二张牌的数字为几的可能性大?如果摸得第一张牌的牌面数字为2呢?(由此引入课题,然后要求学生做实验来验证他们的猜想)做一做:实验1:对于上面的试验进行30次,分别统计第一张牌的牌面字为1时,第二张牌的牌面数字为1和2的次数。实验的具体做法:每两个人一个小组,一个负责抽纸张,另一个人负责记录,如:1221---------(上面一行为第一次抽的)2121---------(下面一行为第二次抽的)议一议:小明的对自己的试验记录进行了统计,结果如下:第一张牌的牌面数字为1(16次)第二张牌的牌面数字为1(7次)第二张牌的牌面数字为2(9次)因此小明认为,如果摸得第一张牌面数字为1,那么摸第二张牌时,摸得牌面数字为2的可能性比较大。你同意小明的看法吗?让学生去讨论小明的看法是否正确,然后让学生去说说自已的看法。想一想:对于前面的游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?会出现3种可能的结果:牌面数字和为2,牌面数字和3,牌面数字和4,每种结果出现的可能性相同小颖的看法:会出现4种可能的结果:牌面数字为(1,1),牌面数字为(1,2),牌面数字为(2,1),牌面数字为(2,2)每种结果出现的可能性相同小亮的看法:实际上,摸第一张牌时,可能出现的的结果是:牌面数字为1或2,而且这两种结果出现的可能性相同;摸第二张牌时,情况也是如此,因此,我们可以用下面的“树状图”或表格来表示所有可能出现的结果:开始第一张牌的面的数字:12第二张牌的牌面数字:1212可能出现的结果(1,1)(1,2)(2,1)(2,2)第二张牌面的数字第一张牌面的数字121(1,1)(1,2)2(2,1)(2,2)从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4。利用树状图或表格,可以比较方便地求出某些事件发生的概率。例1:随机掷一枚硬币两次,至少有一次正面朝上的概率是多少?解:随机掷一枚均匀的硬币两次,所有可能出现的结果如下:正正开始反正反正总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正)(正,反)(反,正),因此至少有一次正面朝上的概率为3/4。第二种解法:列表法第二个硬币的面第一个硬币的面正反正(正,正)(正,反)反(反,正)(反,反)随堂练习:从一定高度随机掷一枚硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果。小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上。那么你认为小明第4次掷硬币,出现正面的可能性大,还是出现反面的可能性大,是不是一样大?说说你的理由,并与同伴进行交流。解:第4次掷硬币时,正面朝上的可能性与反面朝上的可能性一样大。附加练习:将一个均匀的硬币上抛两次,结果为两个正面的概率为______________.课堂小结:这节课学习了通过列表法或树状图来求得事件的概率。课后作业:书本163页:1,2