预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年重庆市永川中学高三(上)12月月考数学试卷(文科)一.选择题(12小题,每题5分,共60分)1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3)B.(1,3]C.[﹣1,2)D.(﹣1,2)2.复数的共轭复数的虚部是()A.B.C.﹣1D.13.已知f(x)=﹣x+sinx,命题p:∀x∈(0,),f(x)<0,则()A.p是假命题,¬p:∀x∈(0,),f(x)≥0B.p是假命题,¬p:∃x0∈(0,),f(x)≥0C.p是真命题,¬p:∀x∈(0,),f(x)≥0D.p是真命题,¬p:∃x0∈(0,),f(x)≥04.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第九日所织尺数为()A.8B.9C.10D.115.“k=﹣1”是“直线l:y=kx+2k﹣1在坐标轴上截距相等”的()A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105B.16C.15D.17.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114B.10C.150D.508.已知扇形的周长是4cm,则扇形面积最大时候扇形的中心角弧度数是()A.2B.1C.D.39.某几何体的三视图如图所示,图中网格小正方形边长为1,则该几何体的体积是()A.4B.C.D.1210.已知定义在[0,+∞)上的函数f(x)满足f(x+1)=2f(x),当x∈[0,1)时,f(x)=﹣x2+x,设f(x)在[n﹣1,n)上的最大值为,则a4=()A.2B.1C.D.11.已知圆O为Rt△ABC的内切圆,AC=3,BC=4,∠C=90°,过圆心O的直线l交圆O于P,Q两点,则的取值范围是()A.(﹣7,1)B..[0,1]C.[﹣7,0]D.[﹣7,1]12.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为()A.①④B.②C.③D.③④二.填空题(4小题,每小题5分,共20分)13.从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于.14.已知三棱锥A﹣BCD中,AB⊥面BCD,BC⊥CD,AB=BC=CD=2,则三棱锥A﹣BCD的外接球体积为.15.某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为万元.16.数列{an}的通项公式为an=2ncos,n∈N*,其前n项和为Sn,则S2016=.三.解答题17.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2+acos2=c.(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为2,求c.18.某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如表:产品编号A1A2A3A4A5质量指标(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(Ⅰ)利用上表提供的样本数据估计该批产品的一等品率;(Ⅱ)在该样品的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.19.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB上的点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若E是PB的中点,若AE与平面ABCD所成角为45°,求三棱锥P﹣ACE的体积.20.已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方