预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第7讲函数与方程学校____________姓名____________班级____________一、知识梳理1.函数的零点(1)概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称α为函数y=f(x)的零点.(2)函数的零点、函数的图像与x轴的交点、对应方程的根的关系:2.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)·f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x0∈(a,b),f(x0)=0.考点和典型例题1、函数零点所在区间的判断【典例1-1】(2022·天津红桥·一模)函数的零点所在的区间是()A.B.C.D.【答案】C【详解】函数是上的连续增函数,,可得,所以函数的零点所在的区间是.故选:C【典例1-2】(2021·山西·太原五中高三阶段练习(文))利用二分法求方程的近似解,可以取的一个区间是()A.B.C.D.【答案】C【详解】解:设,当连续函数满足(a)(b)时,在区间上有零点,即方程在区间上有解,又(2),(3),故(2)(3),故方程在区间上有解,即利用二分法求方程的近似解,可以取的一个区间是.故选:C.【典例1-3】(2019·全国·高三专题练习)若的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程的一个近似根(精确到0.1)为()A.1.2B.1.3C.1.4D.1.5【答案】C【详解】根据二分法,结合表中数据,由于所以方程的一个近似根所在区间为所以符合条件的解为1.4故选:C.【典例1-4】(2022·天津·静海一中高三阶段练习)已知函数是周期为的周期函数,且当时时,,则函数的零点个数是()A.B.C.D.【答案】B【详解】零点个数就是图象交点个数,作出图象,如图:由图可得有个交点,故有个零点.故选:B.【典例1-5】(2022·河南河南·三模(理))函数的所有零点之和为()A.0B.2C.4D.6【答案】B【详解】令,得,图象关于对称,在上递减.,令,所以是奇函数,图象关于原点对称,所以图象关于对称,,在上递增,所以与有两个交点,两个交点关于对称,所以函数的所有零点之和为.故选:B2、图像零点个数的判定【典例2-1】(2022·北京·模拟预测)已知函数,且,则的零点个数为()A.个B.个C.个D.个【答案】C【详解】由可得或,又,则,或,或则的零点个数为3故选:C【典例2-2】(2022·安徽·巢湖市第一中学高三期中(文))已知函数,则函数的零点个数为()A.3B.4C.5D.6【答案】B【详解】令,当时,且递增,此时,当时,且递减,此时,当时,且递增,此时,当时,且递增,此时,所以,的零点等价于与交点横坐标对应的值,如下图示:由图知:与有两个交点,横坐标、:当,即时,在、、上各有一个解;当,即时,在有一个解.综上,的零点共有4个.故选:B【典例2-3】(2016·天津市红桥区教师发展中心高三学业考试)函数.若在内恰有一个零点,则的取值范围是()A.B.C.D.【答案】C【详解】解:当时,函数为常函数,没有零点,不满足题意,所以为一次函数,因为在内恰有一个零点,所以,即,解得或.故的取值范围是.故选:C【典例2-4】(2022·湖南衡阳·二模)已知定义在上的奇函数恒有,当时,,已知,则函数在上的零点个数为()A.4个B.5个C.3个或4个D.4个或5个【答案】D【详解】因为,所以的周期为2,又因为为奇函数,,令,得,又,所以,当时,,由单调递减得函数在上单调递增,所以,得,作出函数图象如图所示,由图象可知当过点时,,此时在上只有3个零点.当经过点时,,此时有5个零点.当时,有4个零点.当经过点时,,此时有5个零点.当时,有4个零点.当经过点时,,此时在上只有3个零点.当时,有4个零点.所以当时,函数在上有4个或5个零点.故选:D【典例2-5】(2022·宁夏银川·一模(理))设函数,已知在上单调递增,则在上的零点最多有()A.2个B.3个C.4个D.5个【答案】A【详解】由,,得,,取,可得.若在上单词递增,则,解得.若,则.设,则,因为所以函数在上的零点最多有2个.所以在上的零点最多有2个.故选:A3、图像零点的综合应用【典例3-1】(2022·安徽·模拟预测(文))已知函数,若有4个零点,则实数a的取值范围是()A.B.C.D.【答案】A【详解】解:令,得,在同一坐标系中作出的图象,如图所示:由图象知:若有4个零点,则实数a的取值范围是,故选:A【典例3-2】(2022·黑龙江·哈师大附中三模(文))已知有且只有一个实数x满足,则实数a的取值范围是()A.B.C.D.【答案】D【详解】显然不是的根.所以因此只有一个实数x满足等价于方程只有一个实数根.令,