预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

重庆市渝中区巴蜀中学2015届高三上学期期中数学试卷(理科)一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈R|y=},B={y∈R|y=|x|﹣1},则A∩B=()A.[0,+∞)B.[1,+∞)C.[﹣1,+∞)D.[0,1]考点:交集及其运算.专题:集合.分析:由x﹣1≥0得x≥1,可求出函数y=的定义域A,求出函数y=|x|﹣1的值域B,再由交集的运算求出A∩B.解答:解:由x﹣1≥0得,x≥1,则函数y=的定义域是[1,+∞),则集合A=[1,+∞),由y=|x|﹣1≥﹣1得,函数y=|x|﹣1的值域是[﹣1,+∞),则集合B=[﹣1,+∞),所以A∩B=[1,+∞),故选:B.点评:本题考查交集及其运算,以及函数的定义域、值域的求法,属于基础题.2.命题“∃x0∈R,使得x03<0”的否定为()A.∃x0∈R,使得x03≥0B.∀x∈R,x3<0C.∃x∈R,使得x3≤0D.∀x∈R,x3≥0考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题,所以命题“∃x0∈R,使得x03<0”的否定为:∀x∈R,x3≥0.故选:D.点评:本题考查命题的否定,因此每天与全称命题的否定关系,基本知识的考查.3.已知复数z=﹣+i(i为虚数单位),则z2=()A.1B.﹣﹣iC.﹣﹣iD.﹣1考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由已知可得z2=(﹣+i)2=﹣i+i2=﹣﹣i解答:解:∵z=﹣+i,∴z2=(﹣+i)2=﹣i+i2=﹣﹣i故选:B点评:本题考查复数的代数形式的乘除运算,属基础题.4.已知向量=(1,2)与向量=(,cosθ)共线,则向量=(tanθ,﹣)的模为()A.1B.C.2D.4考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据两个向量平行的坐标表示,直接代入公式求解得tanθ的值,即可求得结论.解答:解:由向量向量=(1,2)与向量=(,cosθ)共线,得:1×cosθ﹣2×=0,即cosθ=,∴tanθ=±1,∴=2.故选C.点评:本题考查了两个向量平行的坐标表示,平行问题是一个重要的知识点,在2015届高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.5.设函数f(x)=+a是奇函数(a为常数),则f(x)<0的解集为()A.(0,+∞)B.(1,+∞)C.(﹣1,0)∪(0,1)D.(,2)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:函数f(x)=+a是奇函数,可得f(0)=0,解出a,再利用不等式的性质、指数函数的单调性即可得出.解答:解:∵函数f(x)=+a是奇函数,∴f(0)=0,∴=0,解得a=﹣.∴f(x)=.∵f(x)<0,∴<0,化为2x>1,解得x>0.∴f(x)<0的解集为(0,+∞).故选:A.点评:本题考查了奇函数的性质、不等式的性质、指数函数的单调性,考查了推理能力与计算能力,属于中档题.6.若函数f(x)=|x2﹣2x|﹣kx有3个不同的零点,则实数k的取值范围是()A.(0,2)B.(0,3]C.(0,4)D.(0,+∞)考点:函数零点的判定定理.专题:函数的性质及应用.分析:函数f(x)的零点即为方程|x2﹣2x|﹣kx=0的根,也就是y=|x2﹣2x|,y=kx的图象的交点.利用数形结合解决问题.解答:解:函数f(x)的零点即为方程|x2﹣2x|﹣kx=0的根,也就是y=|x2﹣2x|,y=kx的图象的交点,做出这两个函数的图象得:可见函数y=kx必过(0,0),从x轴非负半轴开始逆时针旋转至与函数y=﹣x2+2x在原点处相切时为止,之间的部分两函数图象都有三个交点.设因为y=﹣x2+2x的导数为y=﹣2x+2,所以此时原点处切线的斜率为2,故所求的范围是(0,2).故选A.点评:本题考查了数形结合的思想解决函数零点的问题,思路是函数零点转化为方程的根,再转化为两函数图象的交点.7.设{an}是等差数列,{bn}是等比数列,Sn、Tn分别是数列{an}、{bn}的前n项和.若a3=b3,a4=b4,且=7,则的值为()A.B.C.D.考点:等差数列的性质.专题:等差数列与等比数列.分析:设出等差数列的公差和等比数列的公比,由已知列式得到q=﹣2,进一步求得d=,把要求的式子转化为含有a4的代数式得答案.解答:解:设等差数列的等差为d,等比数列的等比是q,由a3=b3,得,又∵a4=b4,∴,∵=7,∴=,即,即q=﹣2.∴=.故选:C.点评:本题考查了等差数列的性质,考查了等比数列的性质,考查了数学转化思想方法,是中档题.8.的值为()A.