预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

海安中学2020届高三阶段测试三数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.设全集,2,3,4,,若,2,,则集合.解:全集,2,3,4,,若,2,,则集合,.故答案为:,.2.已知复数满足为虚数单位),则的模为.解:复数满足为虚数单位),,,故答案为:.3.已知一组数据的平均数为,极差为,方差为,则数据,,,的方差为_____.故答案为:4.如图是一个算法的伪代码,其输出的结果为.解:模拟执行伪代码,可得:.故答案为:.5.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为.解:从0、2中选一个数字0,则0不只能排在百位,从1、3、5中选两个数字之一排在百位,共有种;从0、2中选一个数字2,从1、3、5中选两个数字全排列,共有种;故共有种.故答案为:30.6.在平面直角坐标系中,若双曲线的离心率为,则双曲线的渐近线方程为.解:因为,所以,所以渐近线方程为.故答案为:.7.将函数的图象向右平移个单位后得到函数的图象,则的值为.解:由将函数的图象向右平移个单位后得到函数的图象,可得把函数的图象向左平移个单位后得函数的图象,故,则,故答案为:4.8.设定义在上的奇函数在区间,上是单调减函数,且(2),则实数的取值范围是.解:根据题意,是在上的奇函数,且在区间,上是单调减函数,则其在区间上递减,则函数在上为减函数,(2)(2),解可得:;即实数的取值范围是;故答案为:.9.在锐角三角形中,,,则的值为.解:锐角三角形中,,,,,.,.则,故答案为:79.10.设为数列的前项和,若,且,则的值为.解:由,,可得.解法1:当时,由,得,,即,数列是首项,公差为6的等差数列,.解法2:当时,由,可得,,数列是首项,公差为3的等差数列,,.11.设正实数,满足,则实数的最小值为.解:由正实数,满足,化为,,化为,解得.因此实数的最小值为.故答案为:.12.如图,正四棱柱的体积为27,点,分别为棱,上的点(异于端点),且,则四棱锥的体积为.解:连接,正四棱柱的体积为27,点,分别为棱,上的点(异于端点),且,,,四棱锥的体积.故答案为:9.13.已知向量,,满足,且与的夹角的正切为,与的夹角的正切为,,则的值为.解:可设,,,由题意可得,,则,即为,又,为锐角,,,可得,同理可得,由正弦定理可得,即有,,则.故答案为:.14.已知,,若同时满足条件:①,或;②,.则的取值范围是.解:对于①,当时,,又①,或在时恒成立则由二次函数的性质可知开口只能向下,且二次函数与轴交点都在的左面则即①成立的范围为又②,此时恒成立在有成立的可能,则只要比,中的较小的根大即可,当时,较小的根为,不成立,当时,两个根同为,不成立,当时,较小的根为,即成立.综上可得①②成立时.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤15.(本小题满分14分)已知的面积为,且,向量和向量是共线向量.(1)求角;(2)求的边长.解:(1),,即,,,,(2)由得:,,,,16.(本小题满分14分)如图,四棱锥的底面为矩形,且,,,分别为,中点.(1)求证:平面;(2)若平面平面,求证:平面平面.证明:(1)方法一:取线段的中点,连接,.因为为的中点,所以,且.因为四边形为矩形,为的中点,所以,且.所以,且.所以四边形为平行四边形.所以.又平面,平面,所以平面.方法二:连接并延长交的延长线于,连接.因为四边形为矩形,所以,所以,.又,所以.所以.又为的中点,所以.(5分)又平面,平面,所以平面.方法三:取的中点,连接,.在矩形中,为的中点,所以,且.所以四边形为平行四边形,所以.又平面,平面,所以平面.因为,分别为,的中点,所以.又平面,平面,所以平面.又,平面,,所以平面平面.因为平面,所以平面.(2)设,相交于.在矩形中,因为,为的中点.所以.又,所以,所以.又,所以.由的内角和为,得.即.因为平面平面因为平面,所以平面,又平面,所以平面平面.17.(本小题满分14分)如图,,是两条海岸线,为海中一个小岛,为海岸线上的一个码头.已知,,到海岸线,的距离分别为,.现要在海岸线上再建一个码头,使得在水上旅游直线经过小岛.(1)求水上旅游线的长;(2)若小岛正北方向距离小岛处的海中有一个圆形强水波,从水波生成时的半径为为大于零的常数).强水波开始生成时,一游轮以的速度自码头开往码头,问实数在什么范围取值时,强水波不会波及游轮的航行.解:(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.则由题设得:,直线的方程为,,.由,及得,.直线的方程为,即,由得即,,即水上旅游线的长为.(2)设试验产生的强水波圆,由题意可得,