预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东省深圳市宝安中学2014-2015学年高二上学期期中数学试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=2.(5分)不等式||>的解集是()A.(0,2)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,0)∪(0,+∞)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)已知等差数列{an}中,a2=6,前7项和S7=84,则a6等于()A.18B.20C.24D.325.(5分)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件6.(5分)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形7.(5分)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则()A.a>bB.a<bC.a=bD.a与b的大小关系不能确定8.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或8二、填空题:本大题共6小题.每小题5分,满分30分9.(5分)命题“∃x∈R,ex>x”的否定是.10.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c.已知bcosC+ccosB=2b,则=.11.(5分)若椭圆+=1过点(﹣2,),则其焦距为.12.(5分)设Sn为等比数列{an}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=.13.(5分)设a>b>0,则的最小值是.14.(5分)已知数列{an}满足a1=33,an+1﹣an=2n,则的最小值为.三、解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程和演算步骤.15.(12分)已知锐角△ABC的面积等于3,且AB=3,AC=4.(1)求sin(+A)的值;(2)求cos(A﹣B)的值.16.(12分)设等差数列{an}的前n项和为Sn,Sn=()2,n∈N+,求{an}的前n项和.17.(14分)已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[,2]时,函数f(x)=x+>恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.18.(14分)设f(x)=ax2+bx,1≤f(﹣1)≤2,2≤f(1)≤4.求f(﹣2)的取值范围.19.(14分)已知椭圆的两焦点为F1(﹣1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.(1)求此椭圆的方程;(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.20.(14分)已知等比数列{an}满足:a2=4公比q=2,数列{bn}的前n项和为Sn,且Sn=bn﹣an+(n∈N*).(1)求数列{an}和数列{bn}的通项an和bn;(2)设cn=(n∈n*),证明:++…+<.广东省深圳市宝安中学2014-2015学年高二上学期期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.2.(5分)不等式||>的解集是()A.(0,2)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,0)∪(0,+∞)考点:绝对值不等式.专题:计算题;转化思想.分析:首先题目求不等式||>的解集,考虑到分析不等式||>含义,即的绝对值大于其本身,故可以得到的值必为负数.解得即可得到答案.解答:解:分析不等式||>,故的值必为负数.即,解得0<x<2.故选A.点评:此题主要考查绝对值不等式的化简问题,分析不等式||>的含义是解题的关键,题目计算量小,属于基础题型.3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4考点:简单线性规划的应用.专题:数形结合.分析: