预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年山东省德州市高二(上)期末数学试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分)1.命题“∃x∈Z,使x2+2x﹣1<0”的否定为()A.∃x∈Z,x2+2x﹣1≥0B.∃x∈Z,使x2+2x﹣1>0C.∀x∈Z,x2+2x+1>0D.∀x∈Z,使x2+2x﹣1≥02.下列双曲线中,渐近线方程为y=±2x的是()A.B.﹣y2=1C.x2﹣=1D.﹣y2=13.“m=﹣1”是“直线mx+(2m﹣1)y+2=0与直线3x+my+3=0垂直”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.当x,y满足条件时,目标函数z=3x+2y的最大值是()A.3B.4C.5D.65.已知α,β是两个不重合的平面,m,n是两条不同的直线,则下列命题中正确的是()A.若m∥α,m∥β,则α∥βB.若m∥n,m∥α,则n∥αC.若α⊥β,m⊥α,n⊥β,则m⊥nD.若α⊥β,m⊥α,n∥β,则m∥n6.一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+47.直线y=a与函数y=x3﹣3x的图象有相异三个交点,则a的取值范围是()A.(﹣2,2)B.(﹣2,0)C.(0,2)D.(2,+∞)8.过圆C:(x﹣4)2+(y+1)2=25上的点M(0,2)作其切线l,且与直线l′:4x﹣ay+2=0平行,则l′与l间的距离是()A.B.C.D.9.已知点A(﹣1,2),B(2,3),直线l:kx﹣y﹣k+1=0与线段AB相交,则实数k的取值范围是()A.﹣≤k≤2B.k≤﹣或k≥2C.﹣2≤k≤D.k≤﹣2或k≥10.设抛物线y2=8x的焦点为F,过点F作直线l交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则弦AB的长为()A.5B.8C.10D.1211.若∃x0∈(0,+∞),不等式ax﹣lnx<0成立,则a的取值范围是()A.(﹣∞,)B.(﹣∞,0)C.(﹣∞,e)D.(﹣∞,1)12.已知F1,F2分别是椭圆+=1(a>b>0)的左右焦点,点A是椭圆的右顶点,O为坐标原点,若椭圆上的一点M满足MF1⊥MF2,|MA|=|MO|,则椭圆的离心率为()A.B.C.D.二、填空题(本题共4个小题,每小题5分,共20分)13.若体积为8的正方体的各个顶点均在一球面上,则该球的体积为.(结果保留π)14.圆C1:x2+y2+2x+8y﹣8=0和圆C2:x2+y2﹣4x﹣5=0的位置关系为.15.已知抛物线x2=2py(p>0)上一点M(4,y0)到焦点F的距离|MF|=y0,则焦点F的坐标为.16.已知f(x)是定义在R上奇函数,又f(2)=0,若x>0时,xf′(x)+f(x)>0,则不等式xf(x)>0的解集是.三、解答题(本题共6个小题,共70分)17.已知圆C经过A(1,3),B(﹣1,1)两点,且圆心在直线y=x上.(Ⅰ)求圆C的方程;(Ⅱ)设直线l经过点(2,﹣2),且l与圆C相交所得弦长为,求直线l的方程.18.设命题p:方程x2+y2﹣2x﹣4y+m=0表示的曲线是一个圆;命题q:方程﹣=1所表示的曲线是双曲线,若“p∧q”为假,求实数m的取值范围.19.如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.20.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x﹣6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.21.已知函数f(x)=ax++1﹣3a(a>0).(Ⅰ)当a=1时,求函数y=f(x)在点(2,f(2))处的切线方程(写成一般式).(Ⅱ)若不等式f(x)≥(1﹣a)lnx在x∈[1,+∞)时恒成立,求实数a的取值范围.22.在平面直角坐标系中,已知点M(1,0),P(x,y)为平面上一动点,P到直线x=2的距离为d,=.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)不过原点O的直线l与C相交于A,B两点,线段AB的中点为D,直线OD与直线x=2交点的纵坐标为1,求△OAB面积的最大值及此时直线l的方程.2016-2017学年山东省德州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分)1.命题“∃x∈Z,使x2+2x﹣1<0”的否定为()A.∃x∈Z,x2+2x﹣1≥0B.∃x∈Z