预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点·精准研析考点一空间向量的线性运算1.在空间四边形ABCD中,若=(-3,5,2),=(-7,-1,-4),点E,F分别为线段BC,AD的中点,则的坐标为()A.(2,3,3)B.(-2,-3,-3)C.(5,-2,1)D.(-5,2,-1)2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________.3.如图所示,在长方体ABCD-A1B1C1D1中,O为AC的中点.用,,表示,则=________.世纪金榜导学号4.如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且=2,若=x+y+z,则x,y,z的值分别为________.世纪金榜导学号【解析】1.选B.因为点E,F分别为线段BC,AD的中点,设O为坐标原点,所以=-,=(+),=(+).所以=(+)-(+)=(+)=[(3,-5,-2)+(-7,-1,-4)]=(-4,-6,-6)=(-2,-3,-3).2.设M(0,y,0),则=(1,-y,2),=(1,-3-y,1),由题意知||=||,所以12+y2+22=12+(-3-y)2+12,解得y=-1,故M(0,-1,0).答案:(0,-1,0)3.因为==(+),所以=+=(+)+=++.答案:++4.因为=+=+=+(-)=+-=+×(+)-×=++,所以x,y,z的值分别为,,.答案:,,1.选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.2.解题时应结合已知和所求观察图形,正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则,就近表示所需向量.考点二共线向量定理、共面向量定理及其应用【典例】1.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若向量a,b,c共面,则实数λ等于()世纪金榜导学号A.B.C.D.2.如图,已知M,N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM∶GA=1∶3.世纪金榜导学号求证:B,G,N三点共线.【解题导思】序号联想解题1因为a,b,c共面,想到c=xa+yb,列出方程组可求参数值.2要证B,G,N三点共线,只要证=λ即可,想到选择恰当的基向量分别表示和.【解析】1.选D.因为向量a,b,c共面,所以由共面向量基本定理,存在唯一有序实数对(x,y),使得xa+yb=c,所以,解方程组得λ=.2.设=a,=b,=c,则=+=+=-a+(a+b+c)=-a+b+c,=+=+(+)=-a+b+c=.所以∥,即B,G,N三点共线.证明三点共线和空间四点共面的方法比较三点(P,A,B)共线空间四点(M,P,A,B)共面=λ且同过点P=x+y对空间任一点O,=+t对空间任一点O,=+x+y1.e1,e2是平面内不共线两向量,已知=e1-ke2,=2e1+e2,=3e1-e2,若A,B,D三点共线,则k的值是()A.2B.-3C.-2D.3【解析】选A.=-=e1-2e2,又A,B,D三点共线,设=λ,所以,所以k=2.2.若A(-1,2,3),B(2,1,4),C(m,n,1)三点共线,则m+n=________.【解析】=(3,-1,1),=(m+1,n-2,-2).因为A,B,C三点共线,所以存在实数λ,使得=λ.即(m+1,n-2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以解得λ=-2,m=-7,n=4.所以m+n=-3.答案:-3考点三空间向量的数量积及其应用命题精解读考什么:(1)考查空间向量的数量积运算、利用数量积求线段长度、夹角大小以及证明垂直问题.(2)考查直观想象与数学运算的核心素养.怎么考:常见命题方向:证明线线垂直,求空间角.新趋势:以柱、锥、台体为载体,利用空间向量的数量积运算解决求值问题.学霸好方法1.(1)利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.(2)利用数量积可解决有关垂直、夹角、长度问题.①a≠0,b≠0,a⊥b⇔a·b=0;②|a|=;③cos<a,b>=QUOTE.2.交汇问题:与立体几何知识联系,考查证明垂直,求空间角等问题.空间向量的数量积运算【典例】1.在棱长为1的正四面体ABCD中,E是BC的中点,则·=世纪金榜导学号()A.0B.C.-D.-2.已知向量a=(1,1,0),b=(-1,0,2)且ka+b与2a-b互相垂直,则k=________.世纪金榜导学号【解析】1.选D.·=·===-.2.由题意