预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

平面向量数乘运算的坐标表示(30分钟60分)一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.下列各组向量中,不能作为平面内所有的向量的基底的一组是()A.a=(-1,2),b=(0,5)B.a=(1,2),b=(2,1)C.a=(2,-1),b=(3,4)D.a=(-2,1),b=(4,-2)【解析】选D.因为(-2)×(-2)-1×4=0,所以a与b共线,不能作为平面内向量的基底.2.若=i+2j,=(3-x)i+(4-y)j(其中i,j的方向分别与x,y轴正方向相同且为单位向量).与共线,则x,y的值可能分别为()A.1,2B.2,2C.3,2D.2,4【解析】选B.由题意知,=(1,2),=(3-x,4-y).因为∥,所以4-y-2(3-x)=0,即2x-y-2=0.只有B选项,x=2,y=2代入满足.【补偿训练】设向量a,b满足|a|=2,b=(2,1),且a与b的方向相反,则a的坐标为()A.(-4,-2)B.(3,4)C.(4,2)D.(-3,-4)【解析】选A.因为b=(2,1),且a与b的方向相反,所以设a=(2λ,λ)(λ<0).因为|a|=2,所以4λ2+λ2=20,λ2=4,λ=-2.所以a=(-4,-2).3.若a=(x,2),b=,c=a+2b,d=2a-b,且c∥d,则c-2d等于()A.B.C.(1,2)D.(-1,-2)【解析】选D.c=(x+1,4),d=,因为3(x+1)=4,所以x=1.所以c=(2,4),d=,c-2d=(-1,-2).4.设向量a=(1,-3),b=(-2,4),若表示向量4a,3b-2a,c的有向线段首尾相接能构成三角形,则向量c等于()A.(1,-1)B.(-1,1)C.(-4,6)D.(4,-6)【解析】选D.因为4a,3b-2a,c对应的有向线段首尾相接能构成三角形,所以4a+3b-2a+c=0,故有c=-2a-3b=-2(1,-3)-3(-2,4)=(4,-6).5.已知向量a=(1,2),b=(0,1),设u=a+kb,v=2a-b,若u∥v,则实数k的值是()A.-B.-C.-D.-【解析】选B.v=2(1,2)-(0,1)=(2,3),u=(1,2)+k(0,1)=(1,2+k).因为u∥v,所以2(2+k)-1×3=0,解得k=-.6.(多选题)下列向量组中,不能作为表示它们所在平面内所有向量的基底的是()A.e1=(0,0),e2=(1,-2)B.e1=(-1,2),e2=(5,7)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=【解析】选ACD.A中向量e1为零向量,所以e1∥e2;C中e1=e2,所以e1∥e2;D中e1=4e2,所以e1∥e2.二、填空题(每小题5分,共10分)7.已知A(2,1),B(0,2),C(-2,1),O(0,0),给出下列结论:①直线OC与直线BA平行;②+=;③+=;④=-2.其中,正确结论的序号为________.【解析】①因为=(-2,1),=(2,-1),所以=-,又直线OC,BA不重合,所以直线OC∥BA,所以①正确;②因为+=≠,所以②错误;③因为+=(0,2)=,所以③正确;④因为=(-4,0),-2=(0,2)-2(2,1)=(-4,0),所以④正确.答案:①③④【补偿训练】已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则实数k的值是________.【解析】=-=(4-k,-7),=-=(-2k,-2).因为A,B,C三点共线,所以,共线,所以-2×(4-k)=-7×(-2k),解得k=-.答案:-8.对于任意的两个向量m=(a,b),n=(c,d),规定运算“⊗”为m⊗n=(ac-bd,bc+ad),运算“⊕”为m⊕n=(a+c,b+d).设m=(p,q),若(1,2)⊗m=(5,0),则(1,2)⊕m等于________.【解析】由(1,2)⊗m=(5,0),可得解得所以(1,2)⊕m=(1,2)⊕(1,-2)=(2,0).答案:(2,0)三、解答题(每小题10分,共20分)9.如图所示,已知点A(4,0),B(4,4),C(2,6),求AC与OB的交点P的坐标.【解析】方法一:由O,P,B三点共线,可设=λ=(4λ,4λ),则=-=(4λ-4,4λ),=-=(-2,6).由与共线得(4λ-4)×6-4λ×(-2)=0,解得λ=,所以==(3,3),所以P点的坐标为(3,3).方法二:设P(x,y),则=(x,y),因为=(4,4),且与共线,所以=,即x=y.又=(x-4,y),=(-2,6),且与共线,则得(x-4)×6-y×(-2)=0,解得x=y=3,所以P点的坐标为(3,3).10.