预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

海淀区2022~2023学年第一学期期末练习高三数学2023.01一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则()A.B.C.D.【答案】D【解析】【分析】利用并集的定义可求得集合.【详解】因为集合,,因此,.故选:D.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据复数除法运算化简复数,从而根据对应点的坐标得到结果.【详解】对应的点坐标为:对应的点位于第一象限本题正确选项:【点睛】本题考查复数对应的复平面的点的问题,关键是能够通过复数的除法运算化简复数,属于基础题.3.已知函数,在下列区间中,包含零点的区间是()A.B.C.D.【答案】D【解析】【分析】先判断出函数在定义域上连续且单调递增,计算出端点值,利用零点存在性定理得到答案.【详解】定义域为,在定义域上连续且单调递增,其中,,,,,由零点存在性定理可得:包含零点的区间为.故选:D4.已知,则()A.B.C.D.【答案】B【解析】【分析】根据指数函数的单调性、正弦函数的单调性、对数函数的单调性进行求解即可/【详解】因为,所以,因为,所以,因为,所以,因此,故选:B5.若圆截直线所得弦长为,则()A.B.C.D.【答案】C【解析】【分析】分析可知直线过圆心,由此可求得实数的值.【详解】圆的标准方程为,圆心为,圆的半径为,因为若圆截直线所得弦长为,所以,直线过圆心,则,解得.故选:C.6.已知为等差数列,,.若数列满足,记的前项和为,则()A.B.C.D.【答案】B【解析】【分析】求出等差数列的通项公式,可求得数列的通项公式,推导出数列为等差数列,再利用等差数列的求和公式可求出的值.【详解】设等差数列的公差为,则,所以,,,,所以,,则,所以,数列等差数列,因此,.故选:B7.某校高一年级计划举办足球比赛,采用抽签的方式把全年级6个班分为甲、乙两组,每组3个班,则高一(1)班、高一(2)班恰好都在甲组的概率是()A.B.C.D.【答案】C【解析】【分析】利用组合数的概念结合古典概型即可求解.【详解】由题意得,把全年级6个班分为甲、乙两组共有种方法,高一(1)班、高一(2)班恰好都在甲组共有种方法,所以高一(1)班、高一(2)班恰好都在甲组的概率是,故选:C.8.设、是两个不同的平面,直线,则“对内的任意直线,都有”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】利用线面垂直的定义、面面垂直的判定定理结合充分条件、必要条件的定义判断可得出结论.【详解】因为、是两个不同的平面,直线,若对内的任意直线,都有,根据线面垂直的定义可知,,,所以,“对内的任意直线,都有”“”;若,因为,对内的任意直线,与的位置关系不确定,所以,“对内的任意直线,都有”“”.因此,“对内的任意直线,都有”是“”的充分而不必要条件.故选:A9.已知函数在区间上的最大值为,则的最小值为()A.B.C.D.【答案】D【解析】【分析】根据在取最大值,可判断要么在的单调减区间上,要么满足左端点到对称轴不小于右端点,即可得,进而可求的最小值.【详解】的周期为,的单调递增区间为,单调递减区间为,当取最大值,故可知,当时,即,,在单调递减,显然满足最大值为,当时,要使是最大值,则需满足,综上可知当,时,在取最大值,在,单调递减,故当时,取最小值,且最小值为,故选:D10.在实际生活中,常常要用到如图1所示的“直角弯管”.它的制作方法如下:如图2,用一个与圆柱底面所成角为的平面截圆柱,将圆柱截成两段,再将这两段重新拼接就可以得到“直角弯管”.在制作“直角弯管”时截得的截口是一个椭圆,若将圆柱被截开的一段(如图3)的侧面沿着圆柱的一条母线剪开,并展开成平面图形,则截口展开形成的图形恰好是某正弦型函数的部分图象(如图4).记该正弦型函数的最小正周期为,截口椭圆的离心率为.若圆柱的底面直径为2,则()A.B.C.D.【答案】B【解析】【分析】由条件求出椭圆的长半轴长和短半轴长,由此可求,再求离心率,再求圆柱侧面展开图的底边边长,由此可得正弦型函数的周期.【详解】设截口椭圆的长半轴长为,短半轴长为,半焦距长为,因为圆柱的底面直径为2,所以,故,因为椭圆截面与底面的夹角为,所以,所以,所以,所以,所以,观察图4知,正弦型函数的最小正周期为圆柱的侧面展开图的底边边长,即圆柱的底面圆的周长,所以.故选:B.二、填空题共5小题,每小题5分,共25分.11.抛物线y2=2x的焦点坐标为____.【答案】(,0).【解析】【详解】试题分析:焦点在x轴的正半轴上,且p=1,利用焦点为(,0),写出焦点坐标.解:抛物线y2=2x的焦点在x轴的正