预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.关于抛物线y=x2﹣6x+9,下列说法错误的是()A.开口向上B.顶点在x轴上C.对称轴是x=3D.x>3时,y随x增大而减小2.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子()A.122B.120C.118D.1163.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于()A.B.C.D.4.由3x=2y(x≠0),可得比例式为()A.B.C.D.5.已知是关于的一元二次方程的解,则等于()A.1B.-2C.-1D.26.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°7.已知二次函数y=kx2-7x-7的图象与x轴没有交点,则k的取值范围为()A.k>B.k≥且k≠0C.k<D.k>且k≠08.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cmB.20cmC.25cmD.30cm9.下列事件是必然事件的是()A.某人体温是100℃B.太阳从西边下山C.a2+b2=﹣1D.购买一张彩票,中奖10.的值等于()A.B.C.D.二、填空题(每小题3分,共24分)11.代数式+2的最小值是_____.12.如图,在半径为5的⊙中,弦,是弦所对的优弧上的动点,连接,过点作的垂线交射线于点,当是以为腰的等腰三角形时,线段的长为_____.13.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)14.已知关于x的方程x2+3x+m=0有一个根为﹣2,则m=_____,另一个根为_____.15.当_____时,是关于的一元二次方程.16.在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是____________.17.若锐角满足,则__________.18.函数y=–1的自变量x的取值范围是.三、解答题(共66分)19.(10分)如图,在中,,矩形的顶点、分别在边、上,、在边上.(1)求证:∽;(2)若,则面积与面积的比为.20.(6分)锐角中,,为边上的高线,,两动点分别在边上滑动,且,以为边向下作正方形(如图1),设其边长为.(1)当恰好落在边上(如图2)时,求;(2)正方形与公共部分的面积为时,求的值.21.(6分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.22.(8分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于A(﹣2,0),点B(4,0).(1)求抛物线的解析式;(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;(3)在直线的上方,抛物线是否存在点M,使四边形ABMC的面积为15?若存在,求出点M的坐标;若不存在,请说明理由.23.(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,,摆动臂可绕点旋转,.(1)在旋转过程中①当、、三点在同一直线上时,求的长,②当、、三点为同一直角三角形的顶点时,求的长.(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,如图2,此时,,求的长.(3)若连接(2)中的,将(2)中的形状和大小保持不变,把绕点在平面内自由旋转,分别取、、的中点、、,连接、、、随着绕点在平面内自由旋转,的面积是否发生变化,若不变,请直接写出的面积;若变化,的面积是否存在最大与最小?若存在,请直接写出面积的最大值与最小值,(温馨提示)24.(8分)求值:25.(10分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴、垂足为点,反比例函数的图象经过的中点、且与相交于点.经过、两点的一次函数解析式为,若点的坐标为,.且.(1)求反比例函数的解析式;(2)在直线