预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

黄冈中学2016年自主招生(理科实验班)预录考试数学模拟试题(C卷)时间120分钟,满分120分一、选择题(每小题5分,共30分)1.已知实数α、β满足α2+3α-1=0,β2-3β-1=0,且αβ≠1,则α-2+3β的值为()A.1B.3C.-3D.103112.在△ABC中,BC=3,内切圆半径r,则的值为()2BCtantan2232333A.B.C.D.23232b2c2a2c2a2b2a2b2c23.设a、b、c为实数,abc≠0,且a+b=c,则的值为()2bc2ca2abA.-1B.1C.2D.34.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个(第4题图)(第5题图)(第6题图)5.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接、.则下列结论:;;;=S;⑤AGB+AED=145°.其AGCF①△ABG≌△AFG②BG=CG③AG∥CF④S△EGC△AFE∠∠中正确的个数是()A.2B.3C.4D.5如图,点(﹣,)在双曲线上,过点的直线与坐标轴分别交于、两点,且6.P11Pl1AB∠.点是该双曲线在第四象限上的一点,过点的直线与双曲线只有一个公共点,并与坐标轴分别交tanBAO=1MMl2于点C、点D.则四边形ABCD的面积最小值为()FA.10B.8C.6D.不确定AD二、填空题(每小题5分,共30分)7.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为E_____________.8.如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点CC落在处,与交于点,则△的周长是BGHQEQBCGEBGcmQ9.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,第14题图丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是分.10.已知整数x、y满足21x20y1315xy,则xy=.11.在△ABC中,∠A=30°,∠C=90°,以C为圆心,CB为半径作圆交AB于M,交AC边于N,CM与BN交于点P,若AN=1,则S-S=.△CPN△BPM12.设有n个数x,x,,x,它们每个数的值只能取0,1,-2三个数中的一个,且12nxxx5,x5x5x5的值是.12n12n三、解答题(共60分)13.(10分)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.m2n2314.(10分)正数m,n满足m4mn2m4n4n3,求的值.m2n20172a43xa229315.(10分)已知a2a10,且,求x的值.a32xa2a11216(15分).某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.17.(15分)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的