预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共40页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题五阅读理解型问题要点梳理要点梳理要点梳理要点梳理要点梳理方法技巧解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.12.(2014·临沂)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=.3.(2014·济南)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)45阅读新知识,解决新问题解:应用:③【点评】本题考查了线段垂直平分线的性质、等腰三角形的性质、勾股定理,读懂题意,在仔细阅读之后弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.1.(2014·兰州)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.解:(1)正方形、矩形、直角梯形均可证明:(2)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC2+CE2=DE2,∴DC2+BC2=AC2.【例2】(2014·黔南州)先阅读以下材料,然后解答问题,分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y);也可以mx+nx+my+ny=(mx+my)+(nx+ny)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法,请用分组分解法分解因式:a3-b3+a2b-ab2.解:a3-b3+a2b-ab2=a3+a2b-(b3+ab2)=a2(a+b)-b2(a+b)=(a+b)(a2-b2)=(a+b)2(a-b).【点评】本题考查了多项式的分解因式,阅读材料之后弄清题中的分组分解法是解本题的关键.2将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,∴点G,B,F在同一条直线上.∵∠EAF=45°,∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°,即∠GAF=∠.又∵AG=AE,AF=AF,∴△GAF≌,∴____=EF,故DE+BF=EF.(((阅读探索规律,推出一般结论小丽展探究发现:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?__是__.(填“是”或“不是”)(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠,∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.(2)∵经过三次折叠,∠BAC是△ABC的好角,∴第三次折叠时,∠A2B2C=∠C,如图所示.∵∠ABB1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∵∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,∴∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C.由上面的探索发现,若∠BAC是△ABC的好角,折叠一次重合,有∠B=∠C;折叠两次重合,有∠B=2∠C;折叠三次重合,有∠B=3∠C;由此可猜想若经过n次折叠,∠BAC是△ABC的好角,则∠B=n∠C;应用提升:(3)小丽找到一个