预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共32页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题二开放探究型问题要点梳理要点梳理要点梳理三个解题方法(1)条件开放型问题:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想、类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.1.(2014·赤峰)直线l过点M(-2,0),该直线的解析式可以写为.(只写出一个即可)2.(2014·绥化)如图,AC,BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是.(填出一个即可)34.(2014·内江)如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:__,使四边形ABCD为平行四边形.(不添加任何辅助线)5条件开放型问题【点评】判断一个四边形是平行四边形的基本依据是:平行四边形的定义及其判定定理,而本题告诉的四边形已有一组对边平行的条件,由此可以想到:①两组对边分别平行;②一组对边平行且相等;③一组对边平行,一组对角相等.都能得到平行四边形的结论.1.(2014·巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).结论开放型问题(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.【点评】解结论开放型问题时要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维能力和知识应用能力.2解:【例3】(2014·龙东)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA,OB的长分别是一元二次方程x2-7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).【点评】本题是一道典型的“存在性问题”,主要利用了解一元二次方程、正方形的性质、全等三角形的判定与性质、待定系数法求一次函数解析式、等腰直角三角形的判定与性质,作辅助线构造出全等三角形是解题的关键,考查了等腰三角形存在的条件,有一定的开放性.3综合开放型问题解:①该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系.②小明以400m/min的速度匀速骑了5min,在原地休息了6min,然后以500m/min的速度匀速骑车回出发地.(本题答案不唯一)【点评】解决综合开放性问题时,需要类比、试验、创新和综合运用所学知识,建立合理的数学模型,从而使问题得以解决.综合开放型问题的解题方法一般不唯一或解题路径不明确,要求解题者不墨守成规,敢于创新,积极发散思维,优化解题方案和过程.4.已知两数4和8,试写出第三个数,使三个数中,其中一个数是其余两个数的比例中项,则第三个数是.(只需写出一个)