预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第2讲平面向量基本定理及坐标表示 [基础题组练] 1.已知e1=(2,1),e2=(1,3),a=(-1,2).若a=λ1e1+λ2e2,则实数对(λ1,λ2)为() A.(1,1) B.(-1,1) C.(-1,-1) D.(1,-1) 解析:选B.因为e1=(2,1),e2=(1,3),所以a=λ1e1+λ2e2=λ1(2,1)+λ2(1,3)=(2λ1+λ2,λ1+3λ2).又因为a=(-1,2),所以eq\b\lc\{(\a\vs4\al\co1(2λ1+λ2=-1,,λ1+3λ2=2,))解得eq\b\lc\{(\a\vs4\al\co1(λ1=-1,,λ2=1.))故选B. 2.已知向量eq\o(AC,\s\up6(→)),eq\o(AD,\s\up6(→))和eq\o(AB,\s\up6(→))在边长为1的正方形网格中的位置如图所示,若eq\o(AC,\s\up6(→))=λeq\o(AB,\s\up6(→))+μeq\o(AD,\s\up6(→)),则λ+μ等于() A.2 B.-2 C.3 D.-3 解析:选A.如图所示,建立平面直角坐标系, 则eq\o(AD,\s\up6(→))=(1,0),eq\o(AC,\s\up6(→))=(2,-2),eq\o(AB,\s\up6(→))=(1,2). 因为eq\o(AC,\s\up6(→))=λeq\o(AB,\s\up6(→))+μeq\o(AD,\s\up6(→)),所以(2,-2)=λ(1,2)+μ(1,0)=(λ+μ,2λ),所以eq\b\lc\{(\a\vs4\al\co1(2=λ+μ,,-2=2λ,))解得eq\b\lc\{(\a\vs4\al\co1(λ=-1,,μ=3,))所以λ+μ=2.故选A. 3.已知OB是平行四边形OABC的一条对角线,O为坐标原点,eq\o(OA,\s\up6(→))=(2,4),eq\o(OB,\s\up6(→))=(1,3),若点E满足eq\o(OC,\s\up6(→))=3eq\o(EC,\s\up6(→)),则点E的坐标为() A.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(2,3),-\f(2,3))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,3),-\f(1,3))) C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(1,3))) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3),\f(2,3))) 解析:选A.易知eq\o(OC,\s\up6(→))=eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→))=(-1,-1),则C(-1,-1),设E(x,y),则3eq\o(EC,\s\up6(→))=3(-1-x,-1-y)=(-3-3x,-3-3y),由eq\o(OC,\s\up6(→))=3eq\o(EC,\s\up6(→))知eq\b\lc\{(\a\vs4\al\co1(-3-3x=-1,,-3-3y=-1,)) 所以eq\b\lc\{(\a\vs4\al\co1(x=-\f(2,3),,y=-\f(2,3),))所以Eeq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(2,3),-\f(2,3))). 4.(2019·河北衡水中学2月调研)一直线l与平行四边形ABCD中的两边AB,AD分别交于点E,F,且交其对角线AC于点M,若eq\o(AB,\s\up6(→))=2eq\o(AE,\s\up6(→)),eq\o(AD,\s\up6(→))=3eq\o(AF,\s\up6(→)),eq\o(AM,\s\up6(→))=λeq\o(AB,\s\up6(→))-μeq\o(AC,\s\up6(→))(λ,μ∈R),则eq\f(5,2)μ-λ=() A.-eq\f(1,2) B.1 C.eq\f(3,2) D.-3 解析:选A.eq\o(AM,\s\up6(→))=λeq\o(AB,\s\up6(→))-μeq\o(AC,\s\up6(→))=λeq\o(AB,\s\up6(→))-μ(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))=(λ-μ)eq\o(AB,\s\up6(→))-μeq\o(AD,\s\up6(→))=2(λ