预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

【与名师对话】2014年高考数学总复习9-5椭圆配套课时作业理新人教A版 一、选择题 1.(2012年东北四校高三模拟)已知方程eq\f(x2,2-k)+eq\f(y2,2k-1)=1表示焦点在y轴上的椭圆,则实数k的取值范围是 () A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),2)) B.(1,+∞) C.(1,2) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1)) 解析:由题意可得,2k-1>2-k>0, 即eq\b\lc\{\rc\(\a\vs4\al\co1(2k-1>2-k,,2-k>0,))解得1<k<2,故选C. 答案:C 2.(2012年甘肃兰州高三诊断)已知△ABC的顶点B,C在椭圆eq\f(x2,12)+eq\f(y2,16)=1上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△ABC的周长是 () A.2eq\r(3) B.4eq\r(3) C.8 D.16 解析:由椭圆定义可知,△ABC的周长等于4a=4×4=16. 答案:D 3.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为 () A.1 B.eq\r(2) C.2 D.2eq\r(2) 解析:设椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0),则使三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴端点, ∴S=eq\f(1,2)×2c×b=bc=1≤eq\f(b2+c2,2)=eq\f(a2,2). ∴a2≥2.∴a≥eq\r(2).∴长轴长2a≥2eq\r(2),故选D. 答案:D 4.设F1,F2分别是椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦点,已知点Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a2,c),\r(3)b))(其中c为椭圆的半焦距),若线段PF1的中垂线恰好过点F2,则椭圆离心率的值为 () A.eq\f(\r(3),3) B.eq\f(1,3) C.eq\f(1,2) D.eq\f(\r(2),2) 解析:由题意,|PF2|=|F1F2|,∴eq\b\lc\(\rc\)(\a\vs4\al\co1(c-\f(a2,c)))2+(eq\r(3)b)2=(2c)2. 又b2=a2-c2,∴eq\b\lc\(\rc\)(\a\vs4\al\co1(c-\f(a2,c)))2+3(a2-c2)=(2c)2. 整理得6e4-e2-1=0, ∴(2e2-1)(3e2+1)=0.∴2e2-1=0,e=eq\f(\r(2),2). 答案:D 5.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是 () A.圆 B.椭圆 C.双曲线 D.抛物线 解析:点P在线段AN的垂直平分线上,故|PA|=|PN|.又AM是圆的半径,∴|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|,由椭圆定义知,P的轨迹是椭圆. 答案:B 6.(2013年西安质检)若点O和点F分别为椭圆eq\f(x2,4)+eq\f(y2,3)=1的中心和左焦点,点P为椭圆上的任意一点,则eq\o(OP,\s\up12(→))·eq\o(FP,\s\up12(→))的最大值为 () A.2 B.3 C.6 D.8 解析:由题意得F(-1,0),设点P(x0,y0), 则yeq\o\al(2,0)=3eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(x\o\al(2,0),4)))(-2≤x0≤2),eq\o(OP,\s\up12(→))·eq\o(FP,\s\up12(→))=x0(x0+1)+yeq\o\al(2,0)=xeq\o\al(2,0)+x0+yeq\o\al(2,0)=xeq\o\al(2,0)+x0+3eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(x\o\al(2,0),4)))=eq\f(1,4)(x0+2)2+2, 当x0=2时,eq\o(OP,\s\up12(→))·eq\o(FP,\s\up12(→))取得最大值为6. 答案:C 二、填空题 7.已知F1(-4,0),F2(4,0),至F1,F2两点的距离之和等于8的点的轨迹是________. 解析