预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一个求解退化约束优化问题全局和超线性收敛的可行SQP算法(英文) Title:AFeasibleSQPAlgorithmforSolvingDegenerateConstrainedOptimizationProblemswithGlobalandSuperlinearConvergence Abstract: Degenerateconstrainedoptimizationproblemsoccurfrequentlyinvariousdomains,posingsignificantchallengesforoptimizationalgorithmsintermsofbothfeasibilityandconvergence.Inthispaper,weproposeanovelSequentialQuadraticProgramming(SQP)algorithmthataddressesthesechallengesbyincorporatingbothglobalandsuperlinearconvergenceproperties.Thealgorithmaimstofindafeasiblesolutionwhilealsoguaranteeingconvergencetoanoptimalsolutionefficiently.Theeffectivenessandrobustnessofthealgorithmaredemonstratedthroughcomprehensivenumericalexperimentsondegenerateoptimizationproblems. 1.Introduction: Constrainedoptimizationproblemswithdegenerateconstraintsareencounteredinawiderangeofapplications,suchasengineering,economics,andfinance.Theseproblemsinvolveconstraintsthatmaylosetheiractivestatusatcertainpointsinthesearchspace,leadingtodifficultiesinfindingfeasiblesolutions.Additionally,achievingconvergencetotheglobaloptimalsolutioninthepresenceofdegenerateconstraintsremainsamajorchallenge.TheobjectiveofthispaperistoproposeafeasibleSQPalgorithmthatovercomesthesechallengesandensuresbothglobalandsuperlinearconvergence. 2.LiteratureReview: Inrecentyears,severaloptimizationalgorithmshavebeendevelopedtotackledegenerateconstrainedoptimizationproblems.However,mostofthesealgorithmsfocusonlocalconvergenceandstruggletohandledegenerateconstraintseffectively.Somenotablemethodsincludeinterior-pointalgorithms,activesetmethods,andpenaltymethods.Whilethesemethodshavemadesignificantcontributions,theyoftensufferfromconvergenceissuesandmayfailtoprovidefeasiblesolutions. 3.Methodology: Ourproposedalgorithmcombineselementsfrombothinterior-pointmethodsandSQPmethodstohandledegenerateconstraintseffectively.ThekeyideaistomodifythestandardSQPalgorithmtoincorporateglobalconvergencepropertiesbydynamicallyadjustingtheinterior-pointparameterduringtheoptimizationprocess.Thismodif