预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

统计学 授课题目第6章抽样推断课次第8-9次授课方式讲授课时安排第8教学周-第9教学周,共4课时教学目的: 通过本章的学习,要求掌握利用样本统计资料来推断总体数量特征的原理及方法;深刻理解抽样推断的概念及特点;了解抽样误差产生的原因,并对抽样误差、抽样平均误差、抽样极限误差加以区别,掌握抽样平均误差、抽样极限误差的计算;掌握点估计和区间估计的方法;掌握必要样本单位数的确定方法。教学重点及难点提示: 重点:区间估计 难点:抽样平均误差的计算案例导入:大学生消费调查:一个月你花多少? 第一节抽样推断概述 一、抽样推断的概念及特点 (一)概念 按随机原则从总体中抽取部分单位,根据这部分单位的信息对总体的数量特征进行科学估计与推断的方法。 包括抽样调查和统计推断 抽样调查:一种非全面调查,按随机原则从总体中抽取部分单位进行调查以获得相 关资料,以推断总体 统计推断:根据抽样调查所获得的信息,对总体的数量特征作出具有一定程度的估 计和推断。 (二)特点 1.按随机原则(等可能性原则)抽取调查单位.随机抽样的目的是为了排除人的主观影响,使每个样本都有系统的可能性被抽中,使样本对总体具有充分的代表性。随机性原则是保证抽样推断正确性的一个重要前提条件。随机抽样不是随便抽样。 2.根据部分推断总体的数量特征 3.抽样推断的结果具有一定的可靠性和准确性,抽样误差可以事先计算和控制 其他特点有经济性、时效性、准确性、灵活性等 (三)抽样推断的应用 1.不可能进行全面调查时 2.不必要进行全面调查时 3.检查生产过程正常与否 4.对全面调查资料进行补充修正时 二、抽样的几个基本概念 1.样本容量与样本个数 (1)样本容量:样本是从总体中抽出的部分单位的集合,这个集合的大小称为样本容量,一般用n表示,它表明一个样本中所包含的单位数。一般地,样本单位数大于30个的样本称为大样本,不超过30个的样本称为小样本。 (2)样本个数:又称样本可能数目,它是指从一个总体中可能抽取多少个样本。样本个数的多少与抽样方法有关。 2.总体参数与样本统计量 (1)总体参数:总体分布的数量特征就是总体参数,也是抽样统计推断的对象。常见的总 体参数有:总体的平均数指标,总体成数(比重)指标,总体分布的方差、标准差等等。 (2)样本统计量:与总体参数对应的是样本统计量。 设()是总体容量为n的样本,若样本函数 () 中不含任何未知参数,则称为一个统计量。 例如 就是一个统计量,称为样本均值(Samplemean), 也是统计量,称为样本方差(Samplevariance), 3.重复抽样与不重复抽样 (1)重复抽样:是指从总体中抽出一个样本单位,记录其标志值后,又将其放回总体中继续参加下一次样本单位的抽取。 (2)不重复抽样:即每次从总体中抽取一个单位,登记后不放回原总体,不参加下一次抽样。 第二节抽样推断的方法 一、点估计 (一)点估计的概念及特点 参数估计:以样本统计量对总体参数进行估计,有点估计和区间估计两种。 点估计:直接以样本统计量作为相应的总体参数的估计量。 优点:直接给出了总体参数的具体数值 缺点:未能反映误差的大小 参数点估计有: (1)样本均值估计总体均值 (2)样本成数估计总体成数 (3)样本方差估计总体方差 (二)估计的评价标准: (1)无偏性: 设是未知参数的一个点估计量,若满足即估计量的数学期望等于被估计参数则称是的无偏估计量,否则称为有偏估计量。 需要注意的是,由于估计量是样本的函数,样本量是维随机变量,所以对求平均是按样本的概率分布求平均。 无偏性是我们衡量点估计量好坏的一个评价标准,这个评价标准的直观意义如下:由于样本的出现带有随机性,所以基于一次具体抽样所得的参数估计值未必等于参数真值,这是由样本的随机性造成的。我们希望当大量使用这个估计量对参数进行估计时,一系列估计值的平均值应该与待估参数真值相等。这就从平均效果上对估计量的优劣给出一个评价标准。 (2)有效性: 设,均为未知参数的无偏估计量,如果对参数的一切可能取值有,则称无偏估计量比有效 一个无偏估计量并不意味着他就非常接近被估计的参数,他还必须与总体参数的离散程度比较小。对同一总体参数的两个无偏点估计量,方差小者更有效。 (3)一致性: 指随着样本单位数n的增大,样本估计量将在概率意义下越来越接近于总体真实值 若对于任意ε>0,有 二、区间估计法 在参数估计中,虽然点估计可以给出未知参数的一个估计,但不能给出估计的精度。为此人们希望利用样本给出一个范围,要求它以足够大的概率包含待估参数真值。这就是导致区间估计问题。 所谓区间估计,就是估计总体参数的区间范围,并要求给出区间估计成立的概率值。 设是未知参数,是来自总体的样本,构造两个统计量,,对于给定的(0<<1),若、满足