1819 31 313 空间向量基本定理 314 空间向量的坐标表示.docx
快乐****蜜蜂
亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
1819 31 313 空间向量基本定理 314 空间向量的坐标表示.docx
3.1.3空间向量基本定理3.1.4空间向量的坐标表示学习目标:1.掌握空间向量的基本定理及其推论,理解空间向量的正交分解,掌握用基底表示空间向量的方法.(重点、难点)2.理解空间向量坐标的定义,能用坐标表示空间向量,掌握空间向量的坐标运算,会根据向量的坐标运算判断两个空间向量平行.(重点)3.基向量的选取及应用.(易错点)[自主预习·探新知]教材整理1空间向量基本定理阅读教材P87~P88例1以上的部分,完成下列问题.1.空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一
1819 31 314 空间向量的直角坐标运算.docx
3.1.4空间向量的直角坐标运算学习目标:1.了解空间向量坐标的定义.2.掌握空间向量运算的坐标表示.(重点).3.能够利用坐标运算来求空间向量的长度与夹角.(难点、易混点)[自主预习·探新知]1.空间向量的坐标表示空间直角坐标系及空间向量的坐标(1)建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的正方向引单位向量i,j,k,这三个互相垂直的单位向量构成空间向量的一个基底{i,j,k},这个基底叫做单位正交基底.单位向量i,j,k都叫做坐标向量.(2)空间向量的坐标在空间直角坐标系中,已知任一向量a,
1819 31 312 空间向量的基本定理.docx
3.1.2空间向量的基本定理学习目标:1.了解共线向量、共面向量的意义,掌握它们的表示方法.2.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.(重点、难点).3.理解基底、基向量及向量的线性组合的概念.[自主预习·探新知]1.共线向量定理与共面向量定理(1)共线向量定理两个空间向量a,b(b≠0),a∥b的充要条件是存在唯一的实数x,使a=xb.(2)向量共面的条件①向量a平行于平面α的定义已知向量a,作eq\o(OA,\s\up8(→))=a,如果a的
314 空间向量的坐标表示.ppt
问题情境构建数学3.空间向量的坐标运算法则.例2已知空间四点A(-2,3,1),B(2,-5,3),C(10,0,10)和D(8,4,9),求证:四边形ABCD是梯形.解:练一练回顾小结
空间直角坐标系向量的坐标表示和空间向量基本定理.docx
课时提升作业(四十八)一、选择题1.点(2,0,3)在空间直角坐标系中的位置是在()(A)y轴上(B)xOy平面上(C)xOz平面上(D)yOz平面上2.已知点B是点A(3,7,-4)在xOz平面上的射影,则|OB|等于()(A)(9,0,16)(B)25(C)5(D)133.以棱长为1的正方体ABCD-A1B1C1D1的棱AB,AD,AA1所在的直线为坐标轴,建立空间直角坐标系,如图所示,则正方形AA1B1B的对角线交点的坐标为()(A)(0,QUOTE,QUOTE)(B)(QUOTE