预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

小学生数学故事:被墨水盖住的算式 小学生数学故事:被墨水盖住的算式 如果要想具备福尔摩斯那样神奇的破译密码的本领,不但应具有非凡的推理能力,还要懂得大量的其他知识。然而,只要你有心,也可以破译一些简单的密码。 现在我们来看一个例子: 据传说,英国物理学家牛顿(1642-1727)小的时候,学习成绩几乎在学校是倒数第一。后来他下决心改变这一令人沮丧的状况。有一次,他把自己的作业做得干净整齐,没有任何错误,但正当他把笔和本子收起来时,糟糕的事情发生了:墨水洒了,正好在他的一道算术题上留下了一块墨迹。下图显示了这个令人不快的结果。 式中只剩下了3个数字较为清晰。小牛顿尽了一切努力,最后终于记起来整道题凑巧用了0、1、2、3、4、5、6、7、8、9全部10个数字,一样一个。 如果这是一种从0到9这10个数字编制的密码,你能破译出被墨水盖住的都是哪些数字吗? 由于被墨水盖住的是10个数字,所以原式应为: 28? +??4 我们可以把这个算式写成: 28A +CB4 GFED 其中每个英文字母分别表示数字0、1、3、5、6、7、9中的某一个。 我们先考虑千位上的G。两个三位数相加,和是四位数,由于两个百位上的数相加,和最多向千位进1,所以,G只能是1,这时,算式就成了: 28A +CB4 1FED 再看百位上的C和F。如果要保证向千位进1,C不能小于7,即C只可能是7或9中的一个。 设C=9,那么如果十位不进位到百位,F=1;如果十位进位到百位,F=2。这都和已知的数字重复。所以C≠9。 所以C=7,F=0。即 28A +7B4 10ED 这时,B可能是3、5、6、7中的某一个。 如果B=3,那么应有E=1或2,但这不可能; 如果B=5,那么E=3,但6+4≠9,9+4≠6; 如果B=6,那么E=5,这时令A=9,则有D=3。 整理出来就是: A=9,B=6,C=7,D=3,E=5,F=0,G=1。 于是,小牛顿的算式应为: 289 +764 我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。1053 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。