预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-6- 【全程复习方略】2014版高考数学2.7函数的图像课时提升作业理北师大版 一、选择题 1.(2013·咸阳模拟)函数y=2|x|-x2(x∈R)的图像大致为() 2.若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx的图像() (A)关于直线y=x对称(B)关于x轴对称 (C)关于y轴对称 (D)关于原点对称 3.(2013·南昌模拟)函数f(x)=xln|x|的图像大致是() 4.f(x)=的图像和g(x)=log2x的图像的交点个数是() (A)4(B)3(C)2(D)1 5.(2013·郑州模拟)函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图像大致是() 6.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数S=f(t)的图像大致是() 7.(2013·汕头模拟)函数y=e|lnx|-|x-1|的图像大致是() 8.(2013·潍坊模拟)一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x,y,剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图像是() 9.(2013·合肥模拟)若函数f(x)=kax-a-x(a>0且a≠1)在R上既是奇函数又是增函数,则g(x)=loga(x+k)的图像大致为() 10.(能力挑战题)如图,虚线部分是四个象限的角平分线,实线部分是函数y=f(x)的部分图像,则f(x)可能是() (A)x2sinx (B)xsinx (C)x2cosx (D)xcosx 二、填空题 11.如图,定义在[-1,+∞)上的函数f(x)的图像由一条线段及抛物线的一部分组成,则f(x)的解析式为. 12.(2013·宁波模拟)已知函数f(x)=|x+1|+|x-a|的图像关于直线x=1对称,则a的值是. 13.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1)时,f(x)=|x|,则函数y=f(x)的图像与函数y=log4|x|的图像的交点的个数为. 14.已知函数f(x)=()x的图像与函数y=g(x)的图像关于直线y=x对称,令h(x)=g(1-|x|),则关于h(x)有下列命题: ①h(x)的图像关于原点对称; ②h(x)为偶函数; ③h(x)的最小值为0; ④h(x)在(0,1)上是减少的. 其中正确命题的序号为(将你认为正确的命题的序号都填上). 三、解答题 15.(能力挑战题)已知函数f(x)=|x2-4x+3|. (1)求函数f(x)的单调区间,并指出其增减性. (2)若关于x的方程f(x)-a=x至少有三个不相等的实数根,求实数a的取值范围. 答案解析 1.【解析】选A.由f(-x)=2|-x|-(-x)2=2|x|-x2=f(x), 知函数y=2|x|-x2是偶函数,故排除B,D. 当x=0时,y=20-02=1,故选A. 2.【解析】选C.由lga+lgb=0,得ab=1,且a>0,a≠1,b>0,b≠1.g(x)=bx=()x=a-x. 3.【解析】选A.由f(-x)=-xln|-x|=-xln|x|=-f(x)知,函数f(x)是奇函数,故排除C,D,又f()=-<0,从而排除B. 4.【解析】选C.在同一坐标系中作出f(x)和g(x)的图像如图所示, 由图像知有2个交点. 【误区警示】本题易由于作图时没有去掉(1,0)点,而误选B.错误原因在于对函数定义不理解. 5.【解析】选C.g(x)=21-x=2·()x,且f(1)=g(1)=1,故选C. 6.【解析】选C.f(t)增长的速度先快后慢,故选C. 7.【思路点拨】根据函数y=e|lnx|-|x-1|知必过点(1,1),再根据函数进行分情况排除. 【解析】选D.y=e|lnx|-|x-1|= 函数过点(1,1).当x≥1时,y=1,排除C, 当x=QUOTE时,y=QUOTE,排除A,B,故选D. 8.【解析】选A.由题意知,xy=10,即y=,且2≤x≤10. 9.【解析】选C.由f(x)是奇函数知f(-x)=-f(x). 即ka-x-ax=a-x-kax, ∴k=1,∴f(0)=0, 又f(x)是增函数. ∴a>1, ∴g(x)=loga(x+1)是增函数,故选C. 10.【解析】选B.由图像知f(x)是偶函数,故排除A,D.对于函数f(x)=x2cosx, f(2π)=4π2,而点(2π,4π2)在第一象限角平分线上面,不合题意,故选B. 11.【解析】当x∈[-1,0]时,设y=kx+