预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年安徽宿州市时村中学数学高一上册期末统考试题含解析 一、单选题(本题共8小题,每题5分,共40分) 1、下列函数中与函数是同一个函数的是() A. B. C. D. 2、若点在角的终边上,则的值为 A. B. C. D. 3、平行于直线且与圆相切的直线的方程是 A.或 B.或 C.或 D.或 4、已知为奇函数,当时,,则() A.3 B. C.1 D. 5、如图所示的四个几何体,其中判断正确的是 A.(1)不棱柱 B.(2)是棱柱 C.(3)是圆台 D.(4)是棱锥 6、已知某几何体的三视图如图所示,则该几何体的体积为() A. B. C. D. 7、圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是() A.x+y+3=0 B.2x-y-5=0 C.3x-y-9=0 D.4x-3y+7=0 8、设,且,则的最小值为() A.4 B. C. D.6 二、多选题(本题共3小题,每题6分,共18分) 9、设函数,若,则实数可以为() A. B. C. D. 10、在同一直角坐标系中,函数与的图象可能是() A. B. C. D. 11、下列命题中正确的是() A.在中, B.若角是第三象限角,则可能在第三象限 C.若,则 D.锐角终边上一点坐标为,则 三、填空题(本题共3小题,每题5分,共15分) 12、若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________ 13、已知,则函数的最大值为__________. 14、在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若QUOTE,则QUOTE___________. 四、解答题(本题共7小题,每题11分,共77分) 15、对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的. (1)若是由“基函数,”生成的,求实数的值; (2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式. 16、已知函数,,. (1)若,解关于方程; (2)设,函数在区间上的最大值为3,求的取值范围; (3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围. 17、已知函数, (1)求在上的最小值; (2)记集合,,若,求的取值范围. 18、某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示: (天)(个)已知第天该商品日销售收入为元. (1)求出该函数和的解析式; (2)求该商品的日销售收入(元)的最小值. 19、已知为第二象限角,且 (1)求与的值; (2)的值 20、在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4. (1)求圆的一般方程; (2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达). 21、已知函数(,且) (1)求的值及函数的定义域; (2)若函数在上的最大值与最小值之差为3,求实数的值 参考答案 一、单选题(本题共8小题,每题5分,共40分) 1、答案:B 【解析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解. 【详解】对于A中,函数的定义为,因为函数的定义域为, 所以两函数的定义域不同,不是同一函数; 对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数; 对于C中,函数与函数的对应法则不同,不是同一函数; 对于D中,函数的定义域为,因为函数的定义域为, 所以两函数的定义域不同,不是同一函数. 故选:B. 2、答案:A 【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案 【详解】由题意,点在角的终边上,即,则, 由三角函数的定义,可得 故选A 【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题. 3、答案:A 【解析】设所求直线为, 由直线与圆相切得, , 解得.所以直线方程为或.选A. 4、答案:B 【解析】根据奇偶性和解析式可得答案. 【详解】由题可知, 故选:B 5、答案:D 【解析】直接利用多面体和旋转体的结构特征,逐一核对四个选项得答案 解:(1)满足前后面互相平行,其余面都是四边形,且相邻四边形的公共边互相平行,∴(1)是棱柱,故A错误; (2)中不满足相邻四边形的公共边互相平行,∴(2)不是棱柱,故B错误; (3)中上下两个圆面不