预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届安徽宿州市时村中学数学高一上册期末统考模拟试题含解析 一、单选题(本题共8小题,每题5分,共40分) 1、下面四种说法: ①若直线异面,异面,则异面; ②若直线相交,相交,则相交; ③若,则与所成的角相等; ④若,,则.其中正确的个数是() A.4 B.3 C.2 D.1 2、设函数,有四个实数根,,,,且,则的取值范围是() A. B. C. D. 3、函数的零点为,,则的值为() A.1 B.2 C.3 D.4 4、半径为1cm,圆心角为的扇形的弧长为() A. B. C. D. 5、函数,的最小值是() A. B. C. D. 6、在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子: 12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768= A.134217728 B.268435356 C.536870912 D.513765802 7、化简= A.sin2+cos2 B.sin2-cos2 C.cos2-sin2 D.±(cos2-sin2) 8、已知函数的定义域是且满足如果对于,都有不等式的解集为 A. B. C. D. 二、多选题(本题共3小题,每题6分,共18分) 9、设,则下列说法中正确的是() A.若,则 B.若,则 C.若,,则 D.若,则 10、在下列四组函数中,与表示同一函数的是() A., B., C., D., 11、已知函数,则() A. B.在上单调递增 C.的图象关于直线对称 D.的图象关于点对称 三、填空题(本题共3小题,每题5分,共15分) 12、已知函数,若a、b、c互不相等,且,则abc的取值范围是______ 13、若x,y∈(0,+∞),且x+4y=1,则的最小值为________. 14、已知,,则ab=_____________. 四、解答题(本题共7小题,每题11分,共77分) 15、已知函数,其中m为常数,且 (1)求m的值; (2)用定义法证明在R上是减函数 16、设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称. (1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象; (2)求函数的单调递增区间; (3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围. 17、已知函数的图象关于直线对称,若实数满足时,的最小值为1 (1)求的解析式; (2)将函数的图象向左平移个单位后,得到的图象,求的单调递减区间 18、已知以点为圆心的圆与直线:相切,过点的直线与圆相交于,两点,是的中点,. (1)求圆的标准方程; (2)求直线的方程. 19、设函数. (1)当时,求函数的零点; (2)当时,判断的奇偶性并给予证明; (3)当时,恒成立,求m的最大值. 20、设全集,集合, (1)当时,求; (2)若,求实数的取值范围 21、已知点是圆内一点,直线. (1)若圆的弦恰好被点平分,求弦所在直线的方程; (2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值; (3)若,是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点. 参考答案 一、单选题(本题共8小题,每题5分,共40分) 1、答案:D 【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确 对于②,直线a,c的关系为平行、相交或异面.故②不正确 对于③,由异面直线所成角的定义知正确 对于④,直线a,c关系为平行、相交或异面.故④不正确 综上只有③正确.选D 2、答案:A 【解析】根据分段函数解析式研究的性质,并画出函数图象草图,应用数形结合及题设条件可得、