预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共76页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第九讲多目标规划方法多目标规划是数学规划的一个分支。 研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为 MOP(multi-objectiveprogramming)。 在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。因此有许多学者致力于这方面的研究。 1896年法国经济学家V.帕雷托最早研究不可比较目标的优化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。求解多目标规划的方法大体上有以下几种: 一种是化多为少的方法,即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等; 另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。 对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。多目标规划模型缩写形式:对于线性多目标规划问题,可以进一步用矩阵表示:多目标规划的非劣解在图1中,max(f1,f2).就方案①和②来说,①的f2目标值比②大,但其目标值f1比②小,因此无法确定这两个方案的优与劣。 在各个方案之间,显然:④比①好,⑤比④好,⑥比②好,⑦比③好……。而对于方案⑤、⑥、⑦之间则无法确定优劣,而且又没有比它们更好的其他方案,所以它们就被称为多目标规划问题的非劣解或有效解, 其余方案都称为劣解。 所有非劣解构成的集合称为非劣解集。效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型 是与各目标函数相关的效用函数的和函数。在用效用函数作为规划目标时,需要确定一组权值i来反映原问题中各目标函数在总体目标中的权重,即:方法二罚款模型(理想点法)理论依据:若规划问题的某一目标可以给出一个可供选择的范围,则该目标就可以作为约束条件而被排除出目标组,进入约束条件组中。 假如,除第一个目标外,其余目标都可以提出一个可供选择的范围,则该多目标规划问题就可以转化为单目标规划问题:方法四目标达到法在求解之前,先设计与目标函数相应的一组目标值理想化的期望目标fi*(i=1,2,…,k), 每一个目标对应的权重系数为i*(i=1,2,…,k), 再设为一松弛因子。 那么,多目标规划问题就转化为:方法五目标规划模型(目标规划法)式中: di+和di-分别表示与fi相应的、与fi*相比的目标超过值和不足值,即正、负偏差变量; pl表示第l个优先级; lk+、lk-表示在同一优先级pl中,不同目标的正、负偏差变量的权系数。三目标规划方法目标规划模型由于决策者所追求的唯一目标是使总产值达到最大,这个企业的生产方案可以由如下线性规划模型给出:求x1,x2,使但是,在实际决策时,企业领导者必须考虑市场等一系列其它条件,如:假定有L个目标,K个优先级(K≤L),n个变量。在同一优先级pk中不同目标的正、负偏差变量的权系数分别为kl+、kl-,则多目标规划问题可以表示为:在以上各式中, kl+、kl-、分别为赋予pl优先因子的第k个目标的正、负偏差变量的权系数, gk为第k个目标的预期值, xj为决策变量, dk+、dk-、分别为第k个目标的正、负偏差变量,目标规划数学模型中的有关概念。目标约束,目标规划所特有的,可以将约束方程右端项看作是追求的目标值,在达到此目标值时允许发生正的或负的偏差,可加入正负偏差变量,是软约束。 线性规划问题的目标函数,在给定目标值和加入正、负偏差变量后可以转化为目标约束,也可以根据问题的需要将绝对约束转化为目标约束。若要区别具有相同优先因子pl的目标的差别,就可以分别赋予它们不同的权系数i*(i=1,2,…,k)。这些优先因子和权系数都由决策者按照具体情况而定。(4)目标函数 目标规划的目标函数(准则函数)是按照各目标约束的正、负偏差变量和赋予相应的优先因子而构造的。当每一目标确定后,尽可能缩小与目标值的偏离。因此,目标规划的目标函数只能是:例2:在例1中,如果决策者在原材料供应受严格控制的基础上考虑:首先是甲种产品的产量不超过乙种产品的产量;其次是充分利用设备的有限台时,不加班;再次是产值不小于56万元。并分别赋予这三个目标优先因子p1,p2,p3。试建立该问题的目标规划模型。例2:在例1中,如果决策者在原材料供应受严格控制的基础上考虑:首先是甲种产品的产量不超过乙种产品的产量;其次是充分利用设备的有限台时,不加班;再次是产值不小