预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共76页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第九讲多目标规划方法多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为MOP(multi-objectiveprogramming)。在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。因此有许多学者致力于这方面的研究。1896年法国经济学家V.帕雷托最早研究不可比较目标的优化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。3多目标规划模型缩写形式:对于线性多目标规划问题,可以进一步用矩阵表示:多目标规划的非劣解在图1中,max(f1,f2).就方案①和②来说,①的f2目标值比②大,但其目标值f1比②小,因此无法确定这两个方案的优与劣。在各个方案之间,显然:④比①好,⑤比④好,⑥比②好,⑦比③好……。9效用最优化模型罚款模型约束模型目标达到法目标规划模型是与各目标函数相关的效用函数的和函数。在用效用函数作为规划目标时,需要确定一组权值i来反映原问题中各目标函数在总体目标中的权重,即:方法二罚款模型(理想点法)理论依据:若规划问题的某一目标可以给出一个可供选择的范围,则该目标就可以作为约束条件而被排除出目标组,进入约束条件组中。假如,除第一个目标外,其余目标都可以提出一个可供选择的范围,则该多目标规划问题就可以转化为单目标规划问题:方法四目标达到法在求解之前,先设计与目标函数相应的一组目标值理想化的期望目标fi*(i=1,2,…,k),每一个目标对应的权重系数为i*(i=1,2,…,k),再设为一松弛因子。那么,多目标规划问题就转化为:1718三目标规划方法目标规划模型由于决策者所追求的唯一目标是使总产值达到最大,这个企业的生产方案可以由如下线性规划模型给出:求x1,x2,使但是,在实际决策时,企业领导者必须考虑市场等一系列其它条件,如:2324目标规划数学模型中的有关概念。目标约束,目标规划所特有的,可以将约束方程右端项看作是追求的目标值,在达到此目标值时允许发生正的或负的偏差,可加入正负偏差变量,是软约束。线性规划问题的目标函数,在给定目标值和加入正、负偏差变量后可以转化为目标约束,也可以根据问题的需要将绝对约束转化为目标约束。若要区别具有相同优先因子pl的目标的差别,就可以分别赋予它们不同的权系数i*(i=1,2,…,k)。这些优先因子和权系数都由决策者按照具体情况而定。(4)目标函数目标规划的目标函数(准则函数)是按照各目标约束的正、负偏差变量和赋予相应的优先因子而构造的。当每一目标确定后,尽可能缩小与目标值的偏离。因此,目标规划的目标函数只能是:29例2:在例1中,如果决策者在原材料供应受严格控制的基础上考虑:首先是甲种产品的产量不超过乙种产品的产量;其次是充分利用设备的有限台时,不加班;再次是产值不小于56万元。并分别赋予这三个目标优先因子p1,p2,p3。试建立该问题的目标规划模型。313233343536373839求解目标规则的单纯形方法所以检验数的正、负首先决定于p1的系数1j的正、负,若1j=0,则检验数的正、负就决定于p2的系数2j的正、负,下面可依此类推。①建立初始单纯形表,在表中将检验数行按优先因子个数分别排成L行,置l=1。②检查该行中是否存在负数,且对应的前L-1行的系数是零。若有,取其中最小者对应的变量为换入变量,转③。若无负数,则转⑤。例4:试用单纯形法求解例2所描述的目标规划问题.①取为初始基变量,列出初始单纯形表。③按规则计算:,所以d2-为换出变量,转入④。④进行换基运算,得表3。以此类推,直至得到最终单纯形表4为止。表2表3表44950515253一、土地利用问题二、生产计划问题三、投资问题大豆取xij决策变量,它表示在第j等级的耕地上种植第i种作物的面积。如果追求总产量最大和总产值最大双重目标,那么,目标函数包括:根据题意,约束方程包括:1.用线性加权方法此方案是:III等耕地全部种植水稻,I等耕地全部种植玉米,II等耕地种植大豆19.1176公顷、种植玉米280.8824公顷。在此方案下,线性加权目标函数的最大取值为6445600。2.目标规划方法如果d1+、d1-分别表示对应第一个目标期望值的正、负偏差变量,d2+、d2-分别表示对应于第二个目标期望值的正、负偏差变量,而且将每一个目标的正、负偏差变量同等看待(即可将它们的权系数都赋为1),那么,该目标规划问题的目标函数为:除了目标约束以外,该模型的约束条件,还包括硬约束和非负约束的限制。其中,硬约束包括耕地面积约束式和最低收获量约束式;非负约束,不但包括决策变量的非