预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题六:概率与统计、推理与证明、算法初步、复数 第二讲概率、随机变量及其分布列 【最新考纲透析】 1.概率 (1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。 (2)了解两个互斥事件的概率加法公式。 (3)理解古典概型及其概率计算公式。 (4)了解几何概型的意义。 (5)了解条件概率。 2.两个事件相互独立,n次独立重复试验 (1)了解两个事件相互独立的概念; (2)理解n次独立重复试验的模型并能解决一些实际问题; 3.离散型随机变量及其分布列 (1)理解取有限个值的离散随机变量及其分布列的概念。 (2)理解二项分布,并解决一些简单问题。 4.离散型随机变量的均值、方差 (1)理解取有限个值的离散型随机变量的均值、方差的概念; (2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 【核心要点突破】 要点考向1:古典概型 考情聚焦:1.古典概型是高考重点考查的概率模型,常与计数原理、排列组合结合起来考查。 2.多以选择题、填空题的形式考查,属容易题。 考向链接:1.有关古典模型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常常用到计数原理与排列、组合的相关知识。 2.在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性。 3.对于较复杂的题目,要注意正确分类,分类时应不重不漏。 例1:(2010·北京高考文科·T3)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是() (A)(B)(C)(D) 【命题立意】本题考查古典概型,熟练掌握求古典概型概率的常用方法是解决本题的关键。 【思路点拨】先求出基本事件空间包含的基本事件总数,再求出事件“”包含的基本事件数,从而。 【规范解答】选D。,包含的基本事件总数。事件“”为,包含的基本事件数为。其概率。 【方法技巧】列古典概型的基本事件空间常用的方法有:(1)列举法;(2)坐标网格法;(3)树图等。 要点考向2:几何概型 考情聚焦:1.几何模型是新课标新增内容,预计今后会成为新课标高考的增长点,应引起高度重视。 2.易与解析几何、定积分等几何知识交汇命题,多以选择题、填空题的形式出现,属中、低档题目。 考向链接:1.当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解。 2.利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。 例2:(2010·湖南高考文科·T11)在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为。 【命题立意】以非常简单的区间立意,运算不复杂,但能切中考查几何概型的要害。 【思路点拨】一元几何概型→长度之比 【规范解答】[-1,2]的长度为3,[0,1]的长度为1,所以概率是. 【方法技巧】一元几何概型→长度之比,二元几何概型→面积之比,三元几何概型→体积之比 要点考向3:条件概率 考情聚焦:1.条件概率是新课标新增内容,在2007年山东高考重点亮相过,预计在今后课改省份高考中会成为亮点。 2.常出现在解答题中和其他知识一同考查,当然也会在选择题、填空题中单独考查 考向链接:(1)利用公式是求条件概率最基本的方法,这种方法的关键是分别求出P(A)和P(AB),其中P(AB)是指事件A和B同时发生的概率。 (2)在求P(AB)时,要判断事件A与事件B之间的关系,以便采用不同的方法求P(AB)。其中,若,则P(AB)=P(B),从而 例3:(2010·安徽高考理科·T15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。 ①; ②; ③事件与事件相互独立; ④是两两互斥的事件; ⑤的值不能确定,因为它与中哪一个发生有关。 【命题立意】本题主要考查概率的综合问题,考查考生对事件关系的理解和条件概率的认知水平. 【思路点拨】根据事件互斥、事件相互独立的概念,条件概率及把事件B的概率转化为可辨析此题。 【规范解答】显然是两两互斥的事件, 有,,, 而 , 且,,有 可以判定②④正确,而①③⑤错误。 【答案】②④ 要点考向4:复杂事件的概率与随机变量的分布列、期望、方差 考情聚焦:1.复杂事件的概率与随机变量的分布列、期望、方差是每年高考必考的内容,与生活实践联系密切。 2.多以解答题的形式呈现,属中档题。 例4:(2010·湖南高考理科·T4)