壳层钝化金属掺杂核壳量子点及其制备方法和应用.pdf
书生****35
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
壳层钝化金属掺杂核壳量子点及其制备方法和应用.pdf
本发明提供了一种壳层钝化金属掺杂核壳量子点及其制备方法和应用。该制备方法是先将金属掺杂量子点分散至溶剂中,再加入预定含量的包含金属掺杂量子点中掺杂的相应金属离子的配体溶液,然后抽真空至溶剂完全抽出;接着采用循环热注入法对量子点进行可控钝化,每次循环热注入的钝化层金属元素的溶液及硫粉溶液的含量逐级增加;最后将反应溶液冷却至室温、离心分离、洗涤,得到壳层钝化金属掺杂核壳量子点。通过本发明的方法能够制备得到稳定的金属掺杂核/壳结构量子点,弥补了表面缺陷,既提高了量子点的光量子效率,又保证了其性质的稳定。
核壳结构的无镉量子点及其制备方法.pdf
本发明提供了一种核壳结构的无镉量子点的制备方法,包括以下步骤:提供ZnInSe量子点溶液;将所述ZnInSe量子点溶液加热至250℃~300℃,加入锌前驱体溶液混合处理后,同时加入硒前驱体溶液和硫前驱体溶液,调控所述硒前驱体溶液和硫前驱体溶液的加入速率,以反应制备得到ZnInSe/ZnSeS核壳结构量子点或ZnInSe/ZnSeS/ZnS核壳结构量子点。采用该方法可以在光化学稳定性差的ZnInSe量子点表面形成对水氧不敏感的ZnSeS壳层,提高量子点的光化学稳定性,同时提高量子点的荧光特性。
核壳结构量子点的厚壳层快速制备及其光学性质的任务书.docx
核壳结构量子点的厚壳层快速制备及其光学性质的任务书一、任务背景在新能源和生物医学领域中,较小的半导体量子点作为材料具有很大的应用前景。核壳结构量子点(CQDs)因其独特的光学和电学性质而吸引了广泛的关注,具有潜在的应用于光电子学、信息通讯、传感器和生物医学等领域。CQDs的外壳厚度对其性能有着很大的影响,厚壳层CQDs具有较高的稳定性和量子产率,但制备过程较为繁琐且时间成本相对较高。因此,本任务旨在设计一种快速制备厚壳层CQDs的方法,并研究其光学性质。二、预期目标1.设计一种快速制备CQDs的方法,并制
金属量子点核壳异质结材料及其制备方法.pdf
本申请涉及半导体纳米材料领域,具体而言,涉及一种金属量子点核壳异质结材料及其制备方法。金属量子点核壳异质结材料的制备方法,包括:将金属盐、油胺和有机磷溶于有机溶剂中得到第一混合液;对第一混合液进行加热分散,并排除第一混合液中的水和氧;在保温的状态下,向第一混合液中加入硫醇、硫化亚铜胶体反应。采用金属盐形成金属量子点核壳异质结材料,由于形成了核壳结构提高了抗水氧能力,稳定性大大提高;通过调节金属离子与量子点中金属离子之间的阳离子交换,利用金属离子局域表面等离子体激元增强效应,有效提高了载流子的复合效率,进而
表面改性钙钛矿量子点及其制备方法和核壳结构量子点.pdf
本发明涉及光电材料技术领域,尤其是涉及表面改性钙钛矿量子点及其制备方法和核壳结构量子点。本发明的表面改性钙钛矿量子点的制备方法,包括如下步骤:有机化合物和钙钛矿量子点于有机溶剂中进行反应,得到所述表面改性钙钛矿量子点;所述有机化合物包括氟化物和/或磷化物。本发明通过采用氟化物和/或膦化物对钙钛矿量子点进行处理,提高了钙钛矿量子点的极性耐受程度、荧光效率和稳定性。