预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广东省中山市高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、等差数列的公差为2,若成等比数列,则()A.72B.90C.36D.452、若曲线的一条切线与直线垂直,则的方程为()A.B.C.D.3、设a,b,c分别是内角A,B,C的对边,若,,依次成公差不为0的等差数列,则()A.a,b,c依次成等差数列B.,,依次成等差数列C.,,依次成等比数列D.,,依次成等比数列4、已知直线,,,则m值为()A.B.C.3D.105、设函数,则和的值分别为()A.、B.、C.、D.、6、早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A.B.C.D.7、设等比数列的前项和为,若,,则()A.66B.65C.64D.638、等比数列中,,则()A.B.C.2D.49、以原点为对称中心的椭圆焦点分别在轴,轴,离心率分别为,直线交所得的弦中点分别为,,若,,则直线的斜率为()A.B.C.D.10、已知正三棱柱的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知圆的半径为3,,为该圆的两条切线,为切点,则的最小值为___________.12、已知,,且与的夹角为钝角,则x的取值范围是___.13、命题“,”的否定是____________.14、如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______15、命题“存在x∈R,使得x2+2x+5=0”的否定是16、某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.三、解答题(本题共5小题,每题12分,共60分)17、已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.18、在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.19、已知抛物线上的点到其焦点F的距离为5.(1)求C的方程;(2)过点的直线l交C于A,B两点,且N为线段的中点,求直线l的方程.20、已知中心在坐标原点O的椭圆,左右焦点分别为,,离心率为,M,N分别为椭圆的上下顶点,且满足.(1)求椭圆方程;(2)已知点C满足,点T在椭圆上(T异于椭圆的顶点),直线NT与以C为圆心的圆相切于点P,若P为线段NT的中点,求直线NT的方程;(3)过椭圆内的一点D(0,t),作斜率为k的直线l,与椭圆交于A,B两点,直线OA,OB的斜率分别是,,若对于任意实数k,存在实数m,使得,求实数m的取值范围.21、已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.2、答案:A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.3、答案:B【解析】由等差数列的性质得,利用正弦定理、余弦定理推导出,从而,,依次成等差数列.【详解】解:∵a,b,c分别是内角A,B,C的对边,,,依次成公差不为0的等差数列,∴,根据正弦定理可得,∴,∴,∴,∴,,依次成等差数列.故选:B.【点睛】本题考查三个数成等差数列或等比数列的判断,考查等差数列、等比数列的性质、