预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广东省中山市高二数学第一学期期末达标检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或B.或C.或D.或2、惊艳全世界的南非双曲线大教堂是由伦敦著名的建筑事务所完成的,建筑师的设计灵感源于想法:“你永无止境的爱是多么的珍贵,人们在你雄伟的翅膀下庇护”.若将如图所示的双曲线大教堂外形弧线的一段近似看成双曲线()下支的一部分,且此双曲线的一条渐近线方程为,则此双曲线的离心率为()A.B.C.D.3、过点作圆的切线,则切线的方程为()A.B.C.或D.或4、函数的图像在点处的切线方程为()A.B.C.D.5、某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38B.40C.46D.586、双曲线:的实轴长为()A.B.C.4D.27、已知椭圆=1的离心率为,则k的值为()A.4B.C.4或D.4或8、围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165B.0.24C.0.275D.0.369、设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A.B.C.D.310、直线过椭圆内一点,若点为弦的中点,设为直线的斜率,为直线的斜率,则的值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________12、若双曲线的渐近线为,则其离心率的值为_______.13、狄利克雷是十九世纪德国杰出的数学家,对数论、数学分析和数学物理有突出贡献.狄利克雷曾提出了“狄利克雷函数”.若,根据“狄利克雷函数”可求___________.14、如图所示,高尔顿钉板是一个关于概率的模型,每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间.小球每次下落时,将随机的向两边等概率的落下.当有大量的小球都落下时,最终在钉板下面不同位置收集到小球.现有5个小球从正上方落下,则恰有3个小球落到2号位置的概率是______15、如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.16、用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是奇数的四位数,这样的四位数一共有___________个.(用数字作答)三、解答题(本题共5小题,每题12分,共60分)17、如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.18、如图1是一张长方形铁片,,,,分别是,中点,,分别在边,上,且,将它卷成一个圆柱的侧面图2,使与重合,与重合.(1)求证:平面;(2)求几何体的体积.19、设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围20、已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程21、已知函数,.(1)讨论的单调性;(2)当时,记在区间的最大值为M,最小值为N,求的取值范围.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C2、答案:B【解析】首先根据双曲线的渐近线方程得到,从而得到,,,再求离心率即可.【详解】双曲线,,,因为双曲线的一条渐近线