预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年内蒙古通辽实验中学高二数学第二学期期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数在处的切线方程为()A.B.C.D.2、已知椭圆C:()的长轴的长为4,焦距为2,则C的方程为()AB.C.D.3、()A.-2B.-1C.1D.24、函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A.B.C.D.5、已知双曲线:的左、右焦点分别为,,点在双曲线上.若为钝角三角形,则的取值范围是A.B.C.D.6、设函数若函数有两个零点,则实数m的取值范围是()A.B.C.D.7、若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或B.或2C.或D.或28、在等差数列中,,,则的取值范围是()A.B.C.D.9、设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A.B.C.D.10、沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30D.7月份的利润最大二、填空题(本题共6小题,每题5分,共30分)11、如图,在平行六面体中,底面是边长为1的正方形,的长度为2,且,则的长度为________12、若在上是减函数,则实数a的取值范围是_________.13、经过点,的直线的倾斜角为___________.14、如图直线过点,且与直线和分别相交于,两点.(1)求过与交点,且与直线垂直的直线方程;(2)若线段恰被点平分,求直线的方程.15、写出一个数列的通项公式____________,使它同时满足下列条件:①,②,其中是数列的前项和.(写出满足条件的一个答案即可)16、在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为___________海里.三、解答题(本题共5小题,每题12分,共60分)17、已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.18、如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.19、已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和20、已知抛物线:的焦点到顶点的距离为.(1)求抛物线的方程;(2)已知过点的直线交抛物线于不同的两点,,为坐标原点,设直线,的斜率分别为,,求的值.21、男子10米气步枪比赛规则如下:在资格赛中,射手在距离靶子10米处,采用立姿,在105分钟内射击60发子弹,总环数排名前8名的射手进入决赛;在决赛中,每位射手仅射击10发子弹.已知甲乙两名运动员均进入了决赛,资格赛中的环数情况整理得下表:环数频数678910甲2352327乙5502525以各人这60发子弹环数的频率作为决赛中各发子弹环数发生的概率,甲乙两人射击互不影响(1)求甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)决赛打完第9发子弹后,甲比乙落后2环,求最终甲能战胜乙(甲环数大于乙环数)的概率参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】利用导数的几何意义即可求切线方程﹒【详解】,,,,在处的切线为:,即﹒故选:C﹒2、答案:D【解析】由题设可得求出椭圆参数,即可得方程.【详解】由题设,知:,可得,则,∴C的方程为.故选:D.3、答案:A【解析】利用微积分基本定理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分的计算,意在考查学生的计算能力.4、答案:C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.5、答案:C【解析】根据双曲线的几何性质,结合余弦定理分别讨论当为钝角时的取值范围,根据双曲线的对称性,可以只考虑点在双曲线上第一象限部分即可.【详解】由题:双曲线:的左、右焦点分别为,,点在双曲线上,必有,若为钝角三角形,根据双曲线的对称性不妨考虑点在双曲线第一象限部分:当为钝角时,在中,设,有,,即,,所以;当时,所在直线方程,所以,,,根据图象可得要使,点向右上方移动,此时,综上所述:的取值范围是.故选:C【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想.6、答案:D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数