预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年河南省新乡市第一中学高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A.B.C.或D.或2、已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A.B.C.D.3、一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线4、在空间直角坐标系中,若,,则点B的坐标为()A.(3,1,﹣2)B.(-3,1,2)C.(-3,1,-2)D.(3,-1,2)5、执行如图所示的流程图,则输出k的值为()A.3B.4C.5D.26、已知集合,则()A.B.C.D.7、若,则()A.22B.19C.-20D.-198、已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条B.3条C.2条D.1条9、俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件10、若实数,满足约束条件,则的最小值为()A.-3B.-2C.D.1二、填空题(本题共6小题,每题5分,共30分)11、已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______12、已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立①数列是等差数列:②数列是等差数列;③注:若选择不同的组合分别解答,则按第一个解答计分13、若,且,则的最小值是____________.14、已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________15、某校开展“读书月”朗诵比赛,9位评委为选手A给出的分数如右边茎叶图所示.记分员在去掉一个最高分和一个最低分后算得平均分为91,复核员在复核时发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是___________.选手A87899924x1516、已知数列则是这个数列的第________项.三、解答题(本题共5小题,每题12分,共60分)17、双曲线(,)的离心率,且过点.(1)求a,b的值;(2)求与双曲线C有相同渐近线,且过点的双曲线的标准方程.18、在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边垂直平分线所在的直线的方程;(2)若的面积为5,求点的坐标19、已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.20、如图,在几何体ABCEFG中,四边形ACGE为平行四边形,为等边三角形,四边形BCGF为梯形,H为线段BF的中点,,,,,,.(1)求证:平面平面BCGF;(2)求平面ABC与平面ACH夹角的余弦值.21、已知抛物线的焦点为F,点在抛物线上,且在第一象限,的面积为(O为坐标原点).(1)求抛物线的标准方程;(2)经过点的直线与交于,两点,且,异于点,若直线与的斜率存在且不为零,证明:直线与的斜率之积为定值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C2、答案:A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题3、答案:C【解析】设动圆圆心,与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,列出几何关系式,化简,再根据圆锥曲线的定义,可得到动圆圆心轨迹.【详解】设动圆圆心,半径为,圆x2+y2=1的圆心为,半径为,圆x2+y2﹣8x+12=0,得,则圆心,半径为,根据圆与圆相切,则,,两式相减得,根据定义可得动圆圆心轨迹为双曲线的一支.故选:C【点睛】本题考查了两圆的位置关系,圆锥曲线的定义,属于基础题.4、答案:C【解析】利用点的坐标表示向量坐标,即可求解.【详解】设,,,所以,,,解得:,,,即.故选:C5、答案:B【解析】根据程序框图运行程序,直到满足,输出结果即可.【详解】按照程序框图运行程序,输入,则,,不满足,循环;,,不满足,循环;,,不满足,循环