预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年浙江省杭州地区七校高二数学期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数的导函数为()A.B.C.D.2、人教A版选择性必修二教材的封面图案是斐波那契螺旋线,它被誉为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.斐波那契螺旋线的画法是:以斐波那契数1,1,2,3,5,8,…为边长的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.下图为该螺旋线在正方形边长为1,1,2,3,5,8的部分,如图建立平面直角坐标系(规定小方格的边长为1),则接下来的一段圆弧所在圆的方程为()A.B.C.D.3、天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个B.2个C.3个D.4个4、已知i是虚数单位,复数z=,则复数z的虚部为()A.iB.-iC.1D.-15、已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037B.4044C.2019D.20226、已知E、F分别为椭圆的左、右焦点,倾斜角为的直线l过点E,且与椭圆交于A,B两点,则的周长为A.10B.12C.16D.207、方程表示的曲线经过的一点是()A.B.C.D.8、若方程表示焦点在y轴上的双曲线,则k的取值范围是()A.B.C.D.9、命题“,”的否定形式是()A.,B.,C.,D.,10、过点,的直线的斜率等于2,则的值为()A.0B.1C.3D.4二、填空题(本题共6小题,每题5分,共30分)11、已知动圆P过定点,且在定圆的内部与其相内切,则动圆P的圆心的轨迹方程为______12、定义在上的函数满足:有成立且,则不等式的解集为__________13、若直线与直线相互平行,则实数___________.14、在某项测量中,测量结果ξ服从正态分布(),若ξ在内取值的概率为0.4,则ξ在内取值的概率为______15、已知双曲线:的右焦点为,过点向双曲线的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的渐近线方程为__________16、已知点和,M是椭圆上一动点,则的最大值为________.三、解答题(本题共5小题,每题12分,共60分)17、已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围18、设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围19、已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.20、已知圆C的圆心为,一条直径的两个端点分别在x轴和y轴上(1)求圆C的方程;(2)直线l:与圆C相交于M,N两点,P(异于点M,N)为圆C上一点,求△PMN面积的最大值21、如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】利用复合函数求导法则即可求导.【详解】,故选:B.2、答案:C【解析】由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由于每一个圆弧为四分之一圆,从而可求出下一段圆弧所以圆的圆心,进而可得其方程【详解】解:由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由题意可知下一段圆弧过点,因为每一段圆弧的圆心角都为90°,所以下一段圆弧所在圆的圆心与点的连线平行于轴,因为下一段圆弧半径为13,所以所求圆的圆心为,所以所求圆的方程为,故选:C3、答案:D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以