预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙江省杭州地区七校高二数学期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知抛物线的焦点为F,过点F作倾斜角为的直线l与抛物线交于两点,则POQ(O为坐标原点)的面积S等于()A.B.C.D.2、双曲线实轴长为()A.1B.C.2D.3、已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5B.25C.D.4、若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A.B.C.D.5、下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4B.3C.2D.16、已知直线和圆,则“”是“直线与圆相切”的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件7、1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130B.132C.140D.1448、设正方体的棱长为,则点到平面的距离是()A.B.C.D.9、设,则A.2B.3C.4D.510、函数的部分图像为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.12、已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________13、已知向量、满足,,且,则与的夹角为___________.14、在等比数列中,已知,则__________15、已知数列{an}的前n项和Sn=n2+n,则an=_____16、在正方体中,二面角的大小为__________(用反三角表示)三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.18、已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.19、已知圆:和圆外一点,过点作圆的切线,切线长为.(1)求圆的标准方程;(2)若圆:,求证:圆和圆相交,并求出两圆的公共弦长.20、小张在2020年初向建行贷款50万元先购房,银行贷款的年利率为4%,要求从贷款开始到2030年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)21、2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】由抛物线的方程可得焦点的坐标,由题意设直线的方程,与抛物线的方程,联立求出两根之和及两根之积,进而求出,的纵坐标之差的绝对值,代入三角形的面积公式求出面积【详解】抛物线的焦点为,,由题意可得直线的方程为,设,,,,联立,整理可得:,则,,所以,所以,故选:A2、答案:B【解析】由双曲线的标准方程可求出,即可求双曲线的实轴长.【详解】由可得:,,即,实轴长,故选:B3、答案:B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B4、答案:A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.5、答案:D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选: