预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省射阳县实验初中高二数学期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()AB.C.D.2、与直线关于轴对称的直线的方程为()A.B.C.D.3、已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0)B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0)D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)4、如图,已知二面角平面角的大小为,其棱上有、两点,、分别在这个二面角的两个半平面内,且都与垂直.已知,,则()A.B.C.D.5、下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,6、在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A.B.C.D.7、某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率()A.B.C.D.8、函数的导数记为,则等于()A.B.C.D.9、若直线被圆截得的弦长为4,则的最大值是()A.B.C.1D.210、若函数,当时,平均变化率为3,则等于()A.B.2C.3D.1二、填空题(本题共6小题,每题5分,共30分)11、曲线在点M(π,0)处的切线方程为________12、已知直线与直线垂直,则实数的值为___________.13、已知直线:与直线:平行,则的值为___________.14、已知抛物线的焦点与的右焦点重合,则__________.15、已知向量与是平面的两个法向量,则__________16、阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________三、解答题(本题共5小题,每题12分,共60分)17、已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.18、在等差数列中,,前10项和(1)求列的通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和19、已知函数(1)讨论的单调性;(2)当时,证明20、如图在四棱锥中,底面是菱形,,平面平面,,,为的中点,是棱上的一点,且.(1)求证:平面;(2)求二面角的余弦值.21、已知圆,直线过定点.(1)若与圆相切,求的方程;(2)若与圆相交于两点,且,求此时直线的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.2、答案:D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.3、答案:D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D4、答案:C【解析】以、为邻边作平行四边形,连接,计算出、的长,证明出,利用勾股定理可求得的长.【详解】如下图所示,以、为邻边作平行四边形,连接,因为,,则,又因为,,,故二面角的平面角为,因为四边形为平行四边形,则,,因为,故为等边三角形,则,,则,,,故平面,因为平面,则,故.故选:C.5、答案:A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.6、答案:B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由