预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省射阳县实验初中高二数学第一学期期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设集合,则AB=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}2、已知向量,.若,则()A.B.C.D.3、已知是函数的导函数,则()A.B.C.D.4、已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A.B.C.D.5、已知等差数列,若,,则()A.1B.C.D.36、已知数列的前n项和为,则“数列是等比数列”为“存在,使得”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件7、知点分别为圆上的动.点,为轴上一点,则的最小值()A.B.C.D.8、过点且平行于直线的直线的方程为()A.B.C.D.9、已知m是2与8的等比中项,则圆锥曲线x2﹣=1的离心率是()A.或B.C.D.或10、已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、直线与椭圆交于,两点,线段的中点为,设直线的斜率为,直线(其中为坐标原点)的斜率为,则______.12、已知向量,若,则实数___________.13、如图,在长方体ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是侧面BCC1B1上的动点,且AP⊥BD1,记点P到平面ABCD的距离为d,则d的最大值为____________.14、在递增等比数列中,其前项和,若,,则_________.15、椭圆的焦距为______.16、已知圆:,圆:,则圆与圆的位置关系是______三、解答题(本题共5小题,每题12分,共60分)17、已知为数列的前n项和,,且,,其中为常数.(1)求证:数列为等差数列;(2)是否存在,使得是等差数列?并说明理由.18、已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程19、如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.20、为增强市民的环境保护意识,某市面向全市征召若干名宣传志愿者,成立环境保护宣传小组,现把该小组的成员按年龄分成、、、、这组,得到的频率分布直方图如图所示,已知年龄在内的人数为.(1)若用分层抽样的方法从年龄在、、内的志愿者中抽取名参加某社区的宣传活动,再从这名志愿者中随机抽取名志愿者做环境保护知识宣讲,求这名环境保护知识宣讲志愿者中至少有名年龄在内的概率;(2)在(1)的条件下,记抽取的名志愿者分别为甲、乙,该社区为了感谢甲、乙作为环境保护知识宣讲的志愿者,给甲、乙各随机派发价值元、元、元的纪念品一件,求甲的纪念品不比乙的纪念品价值高的概率.21、如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B2、答案:A【解析】根据给定条件利用空间向量平行的坐标表示直接计算作答.【详解】向量,,因,则,解得,所以,B,D都不正确;,C不正确,A正确.故选:A3、答案:B【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故选:B.4、答案:A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.5、答案:C【解析】利用等差数列的通项公式进行求解.【详解】设等差数列的公差为,因为,,所以,解得.故选:C.6、答案:D【解析】由充分必要条件的定义,结合等比数列的通项公式和求和公式,以及利用特殊数列的分法,即可求解.【详解】由题意,数列是等比数列,设等比数列的公比为,则,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,当,可得,此时数列不是等比数列,即必要性不成立,所以数列是等比数列为存在,使得的充分不必要条件.故选:D.7、答案:B【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴的对称圆的圆心坐标,半径为1,圆的圆