预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年江苏省射阳县实验初中高二数学第二学期期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知直线,若异面,,则的位置关系是()A.异面B.相交C.平行或异面D.相交或异面2、若直线与直线垂直,则()A6B.4C.D.3、已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A.B.C.D.4、若且,则下列选项中正确的是()AB.C.D.5、已知是空间的一个基底,,,,若四点共面.则实数的值为()A.B.C.D.6、古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线;当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.现有方程表示的曲线是双曲线,则的取值范围为()A.B.C.D.7、已知点,,直线与线段相交,则实数的取值范围是()A.或B.或C.D.8、设是等差数列的前n项和,若,,则()A.26B.-7C.-10D.-139、1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11B.12C.13D.1810、通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”二、填空题(本题共6小题,每题5分,共30分)11、不等式的解集是___________.12、设双曲线C:的焦点为,点为上一点,,则为_____.13、函数是R上的单调递增函数,则a的取值范围是______14、已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;15、数列中,,则______16、已知是双曲线上的一点,是上的两个焦点,若,则的取值范围是_______________三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.18、某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?19、某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?20、已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程21、如图,在四棱锥中,四边形为平行四边形,且,,三角形为等腰直角三角形,且,.(1)若点为棱的中点,证明:平面平面;(2)若平面平面,点为棱的中点,求直线与平面所成角的正弦值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D2、答案:A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.3、答案:B【解析】根据得到三角形为等腰三角形,然后结合双曲线