预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届德宏市重点中学高二数学第二学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60B.120C.150D.2402、已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6B.5C.4D.23、若数列是等比数列,且,则()A.1B.2C.4D.84、已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5B.25C.D.5、已知椭圆的离心率为,左、右焦点分别为、,过作轴的平行线交椭圆于、两点,为坐标原点,双曲线的虚轴长为,且以、为顶点,以直线、为渐近线,则椭圆的短轴长为()A.B.C.D.6、在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定7、已知双曲线:的右焦点为,过的直线(为常数)与双曲线在第一象限交于点.若(为原点),则的离心率为()A.B.C.D.58、某校开学“迎新”活动中要把3名男生,2名女生安排在5个岗位,每人安排一个岗位,每个岗位安排一人,其中甲岗位不能安排女生,则安排方法的种数为()A.72B.56C.48D.369、已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()AB.C.D.10、已知等差数列的前项和为,若,则()AB.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.12、已知向量,,若向量与向量平行,则实数______13、若满足约束条件,则的最大值为_____________14、已知的顶点A(1,5),边AB上的中线CM所在的直线方程为,边AC上的高BH所在直线方程为,求(1)顶点C的坐标;(2)直线BC的方程;15、如图,在长方体ABCD—A1B1C1D1,AB=BC=2,CC1=1,则直线AD1与B1D所成角的余弦值为__.16、有公共焦点,的椭圆和双曲线的离心率分别为,,点为两曲线的一个公共点,且满足,则的值为______三、解答题(本题共5小题,每题12分,共60分)17、如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.18、已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:19、在平面直角坐标系中,椭圆的离心率为,且点在椭圆C上(1)求椭圆C的标准方程;(2)过点的直线与椭圆C交于A,B两点,试探究直线上是否存在定点Q,使得为定值.若存在,求出定点Q的坐标及实数的值;若不存在,请说明理由20、已知在△ABC中,角A,B,C的对边分别为a,b,c,且(1)求C;(2)若,求的最大值21、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】结合排列组合的知识,分两种情况求解.【详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C2、答案:B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B3、答案:C【解析】根据等比数列的性质,由题中条件,求出,即可得出结果.【详解】因为数列是等比数列,由,得,所以,因此.故选:C.4、答案:B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B5、答案:C【解析】不妨取点在第一象限,根据椭圆与双曲线的几何性质,以及它们之间的联系,可得点的坐标,再将其代入椭圆的方程中,解之即可【详解】解:由题意知,在椭圆中,有,在双曲线中,有,,即,双曲线的渐近线方程为,不妨取点在第一象限,则的坐标为,即,将其代入椭圆的方程中,有,,解得,椭圆的短轴长为故选:6、答案:C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C7、答案:D【解析】取双曲线的左焦点,连接,计算可得,即.设,则,,解得:,利用勾股定理计算可得,即可得出结果.【详解】取双曲线的左焦点,连接,,则因为,所以,即.,.设,则,,解得:.,,.